An inverse mixed problem for an integro-differential equation with a multidimensional Benney--Luke operator and nonlinear maximums
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the unique generalized solvability and construct solutions to a nonlinear multidimensional inverse mixed problem for a nonlinear fourth-order Benney–Luke integro-differential equation with a degenerate kernel and nonlinear maximums. Sufficient coefficient conditions for the unique solvability of the problem are established. We prove that the solution of the direct mixed problem continuously depends on the initial functions and the overdetermination function. Our research is based on the Fourier method of separation of variables, the method of contraction mappings, the method of successive approximations, and the method of integral and sum inequalities.
Keywords: inverse mixed problem, integro-differential equation, degenerate kernel, nonlinear maximгь, generalized solvability.
@article{INTO_2021_201_a0,
     author = {T. K. Yuldashev (Iuldashev)},
     title = {An inverse mixed problem for an integro-differential equation with a multidimensional {Benney--Luke} operator and nonlinear maximums},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a0/}
}
TY  - JOUR
AU  - T. K. Yuldashev (Iuldashev)
TI  - An inverse mixed problem for an integro-differential equation with a multidimensional Benney--Luke operator and nonlinear maximums
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 15
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a0/
LA  - ru
ID  - INTO_2021_201_a0
ER  - 
%0 Journal Article
%A T. K. Yuldashev (Iuldashev)
%T An inverse mixed problem for an integro-differential equation with a multidimensional Benney--Luke operator and nonlinear maximums
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-15
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a0/
%G ru
%F INTO_2021_201_a0
T. K. Yuldashev (Iuldashev). An inverse mixed problem for an integro-differential equation with a multidimensional Benney--Luke operator and nonlinear maximums. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2021_201_a0/

[1] \label{yu1} Vagabov A. I., “Obobschennyi metod Fure resheniya smeshannykh zadach dlya nelineinykh uravnenii”, Differ. uravn., 32:1 (1996), 90–100 | MR | Zbl

[2] \label{yu2} Volkov V. M., “Obratnaya zadacha dlya kvazilineinogo uravneniya parabolicheskogo tipa”, Differ. uravn., 19:12 (1983), 2166–2169 | MR | Zbl

[3] \label{yu3} Dyikanov G. A., “Smeshannaya zadacha dlya odnogo nelineinogo differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka”, Vestn. OshGU., 2 (2017), 41–48

[4] \label{yu4} Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s singulyarnoi tochkoi v yadre”, Vestn. Tomsk. un-ta. Mat. Mekh., 46 (2017), 24–36

[5] \label{yu5} Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 21:2 (2017), 236–248 | Zbl

[6] \label{yu6} Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Usp. mat. nauk., 15:2 (1960), 97–154 | MR

[7] \label{yu7} Ilin V. A., Moiseev E. I., “Optimizatsiya za proizvolnyi dostatochno bolshoi promezhutok vremeni granichnogo upravleniya kolebaniyami struny uprugoi siloi”, Differ. uravn., 42:12 (2006), 1699–1711 | MR

[8] \label{yu8} Kabanikhin S. I., Shishlenin M. A., “Vosstanovlenie koeffitsienta diffuzii, zavisyaschego ot vremeni, po nelokalnym dannym”, Sib. zh. vychisl. mat., 21:1 (2018), 55–63 | MR | Zbl

[9] \label{yu9} Kamynin V. L., “Ob odnoznachnoi razreshimosti obratnoi zadachi dlya parabolicheskikh uravnenii s usloviem finalnogo pereopredeleniya”, Mat. zametki., 73:2 (2003), 217–227 | Zbl

[10] \label{yu10} Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Mat. sb., 183:4 (1992), 49–68 | Zbl

[11] \label{yu11} Savateev E. G., “O zadache opredeleniya funktsii istochnika i koeffitsienta parabolicheskogo uravneniya”, Dokl. RAN., 344:5 (1995), 597–598 | MR | Zbl

[12] \label{yu12} Solovev V. V., “O razreshimosti obratnoi zadachi opredeleniya istochnika s pereopredeleniem na verkhnei kryshke dlya parabolicheskogo uravneniya”, Differ. uravn., 25:9 (1989), 1577–1583 | MR

[13] \label{yu13} Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | MR | Zbl

[14] \label{yu14} Chandirov G. I., Smeshannaya zadacha dlya kvazilineinykh uravnenii giperbolicheskogo tipa, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Baku, 1970

[15] \label{yu15} Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, MGU, M., 1992

[16] \label{yu16} Shabadikov K. Kh., Issledovanie reshenii smeshannykh zadach dlya kvazilineinykh differentsialnykh uravnenii s malym parametrom pri starshei smeshannoi proizvodnoi, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Fergana, 1984

[17] \label{yu17} Yuldashev T. K., “Predelnaya zadacha dlya sistemy integro-differentsialnykh uravnenii s dvukhtochechnymi smeshannymi maksimumami”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1 (2008), 15–22 | Zbl

[18] \label{yu18} Yuldashev T. K., “Priblizhennoe reshenie sistemy nelineinykh integralnykh uravnenii Volterra s maksimumami i priblizhennoe vychislenie funktsionala kachestva”, Vestn. Voronezh. un-ta. Ser. Sistem. anal. inform. tekhn., 2 (2015), 13–20

[19] \label{yu19} Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta mat. inform. Udmurt. un-ta., 50 (2017), 121–132 | Zbl

[20] \label{yu20} Yuldashev T. K., “Ob odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 95–109 | MR

[21] \label{yu21} Yuldashev T. K., “Opredelenie koeffitsienta v nelokalnoi zadache dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Vladikavkaz. mat. zh., 21:2 (2019), 67–84 | MR | Zbl

[22] \label{yu22} Yuldashev T. K., “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 129–140

[23] \label{yu23} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[24] \label{yu24} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl