Divergent series and the mixed problem for the wave equation with free endpoints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mixed problem for homogeneous wave equation with a summable potential, free endpoints, and zero initial velocity, we obtain necessary and sufficient conditions of the existence of the classic solution and a generalized solution for a summable initial function. The resolvent approach, the Fourier method, A. N. Krylov's ideas on the acceleration of convergence of Fourier series, and important Euler's ideas on application of divergent series allow us to obtain a generalization of d'Alembert formula for the classic solution in the form of uniformly converging series whose terms are solutions of corresponding mixed problems for a inhomogeneous wave equation with zero potential, free endpoints, and zero initial data. This series also converges if the initial function is summable and, therefore, it is a generalized solution of the mixed problem in this case.
Keywords: Fourier method, A. N. Krylov's method, classical solution, resolvent.
Mots-clés : divergent series
@article{INTO_2021_200_a6,
     author = {V. P. Kurdyumov and A. P. Khromov},
     title = {Divergent series and the mixed problem for the wave equation with free endpoints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/}
}
TY  - JOUR
AU  - V. P. Kurdyumov
AU  - A. P. Khromov
TI  - Divergent series and the mixed problem for the wave equation with free endpoints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 65
EP  - 72
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/
LA  - ru
ID  - INTO_2021_200_a6
ER  - 
%0 Journal Article
%A V. P. Kurdyumov
%A A. P. Khromov
%T Divergent series and the mixed problem for the wave equation with free endpoints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 65-72
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/
%G ru
%F INTO_2021_200_a6
V. P. Kurdyumov; A. P. Khromov. Divergent series and the mixed problem for the wave equation with free endpoints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 65-72. http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/

[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN., 458:2 (2014), 138–140 | DOI | MR | Zbl

[2] Gurevich A. P., Kurdyumov V. P., Khromov A. P., “Obosnovanie metoda Fure v smeshannoi zadache dlya volnovogo uravneniya s nenulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:1 (2016), 13–29 | DOI | MR | Zbl

[3] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:4 (2015), 621–630 | DOI | MR | Zbl

[4] Kornev V. V., Khromov A. P., “Klassicheskoe reshenie smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 172 (2019), 123–137

[5] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.-L., 1950

[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[7] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[8] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | DOI | MR | Zbl

[9] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | DOI | Zbl

[10] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991

[11] Eiler L., Differentsialnoe ischislenie, GITTL, M.-L., 1949