Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a6, author = {V. P. Kurdyumov and A. P. Khromov}, title = {Divergent series and the mixed problem for the wave equation with free endpoints}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {65--72}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/} }
TY - JOUR AU - V. P. Kurdyumov AU - A. P. Khromov TI - Divergent series and the mixed problem for the wave equation with free endpoints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 65 EP - 72 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/ LA - ru ID - INTO_2021_200_a6 ER -
%0 Journal Article %A V. P. Kurdyumov %A A. P. Khromov %T Divergent series and the mixed problem for the wave equation with free endpoints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 65-72 %V 200 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/ %G ru %F INTO_2021_200_a6
V. P. Kurdyumov; A. P. Khromov. Divergent series and the mixed problem for the wave equation with free endpoints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 65-72. http://geodesic.mathdoc.fr/item/INTO_2021_200_a6/
[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN., 458:2 (2014), 138–140 | DOI | MR | Zbl
[2] Gurevich A. P., Kurdyumov V. P., Khromov A. P., “Obosnovanie metoda Fure v smeshannoi zadache dlya volnovogo uravneniya s nenulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:1 (2016), 13–29 | DOI | MR | Zbl
[3] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:4 (2015), 621–630 | DOI | MR | Zbl
[4] Kornev V. V., Khromov A. P., “Klassicheskoe reshenie smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 172 (2019), 123–137
[5] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.-L., 1950
[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[7] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951
[8] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | DOI | MR | Zbl
[9] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | DOI | Zbl
[10] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991
[11] Eiler L., Differentsialnoe ischislenie, GITTL, M.-L., 1949