Operators with discontinuous range and their applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a brief review of applications of operators with discontinuous range (called discontinuous operators) to problems of the approximation theory and ill-posed problems. In the approximation theory, a class of integral operators with delta-type kernels is well known. Applying these operators to continuous functions defined on an interval, one can obtain uniform approximations of these functions only inside the interval. To obtain uniform approximations on the whole interval, we construct discontinuous operators using operators with delta-type kernels. The general idea of this construction proposed by A. P. Khromov was used by the author for solving some problems: approximation of derivatives of any order, reconstruction of continuous functions, reconstruction of derivatives of a function on an interval by given root-mean-square approximations of the function. Finally, for Abel integral equations with approximate right-hand sides, we develop a simple regularization method, which does not require any additional information on the exact solution except for its continuity. The problems of the choice of a regularization parameter and the error estimate are solved in the case where the exact solution of Abel equation belongs to a Lipschitz class. Moreover, a new class of discontinuous operators with polynomial finitely supported kernels is introduced and applications of these operators in the problems of approximation and reconstruction functions and their derivatives are discussed.
Keywords: uniform approximations, integral operator, discontinuous range, regularization
Mots-clés : Abel equation, error estimation.
@article{INTO_2021_200_a5,
     author = {G. V. Khromova},
     title = {Operators with discontinuous range and their applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - Operators with discontinuous range and their applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 58
EP  - 64
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/
LA  - ru
ID  - INTO_2021_200_a5
ER  - 
%0 Journal Article
%A G. V. Khromova
%T Operators with discontinuous range and their applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 58-64
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/
%G ru
%F INTO_2021_200_a5
G. V. Khromova. Operators with discontinuous range and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 58-64. http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/

[1] Khromova G. V., “O zadache vosstanovleniya funktsii, zadannykh s pogreshnostyu”, Zh. vychisl. mat. mat. fiz., 17:5 (1977), 1161–1171 | DOI | MR | Zbl

[2] Sendov B. Kh., “Modifitsirovannaya funktsiya Steklova”, Dokl. Bolg. akad. nauk., 134:2 (1983), 355–379 | DOI | MR | Zbl

[3] Khromov A. P., Khromova G. V., “Razryvnye operatory Steklova v zadache ravnomernogo priblizheniya proizvodnykh na otrezke”, Zh. vychisl. mat. mat. fiz., 54:9 (2014), 1442–1557 | DOI

[4] Khromova G. V., “O tikhonovskoi regulyarizatsii”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 1:2 (2001), 75–81

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[6] Pikalov V. V., Preobrazhenskii N. G., Rekonstruktivnaya tomografiya v gazodinamike i fizike plazmy, Nauka, Novosibirsk, 1987

[7] Sizikov V. S., Smirnov A. V., Fedorov B. A., “Chislennoe reshenie singulyarnogo integralnogo uravneniya Abelya obobschennym metodom kvadratur”, Izv. vuzov. Mat., 2004, no. 8, 62–70 | MR | Zbl

[8] Preobrazhenskii N. G., Pikalov V. V., Neustoichivye zadachi diagnostiki plazmy, Nauka, Novosibirsk, 1982 | DOI

[9] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR., 151:3 (1963), 501–509 | DOI | MR

[10] Khromova G. V., “Ob otsenkakh pogreshnosti priblezhennykh reshenii uravnenii pervogo roda”, Dokl. RAN., 378:5 (2001), 605–609 | MR | Zbl

[11] Khromova G. V., “Ob odnom sposobe postroeniya metodov regulyarizatsii uravnenii 1 roda”, Zh. vychisl. mat. mat. fiz., 40:7 (2010), 997–1002

[12] Khromova G. V., “Regulyarizatsiya uravneniya Abelya s pomoschyu razryvnogo operatora Steklova”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 14:4 (2014), 599–603 | Zbl

[13] Khromova G. V., “O priblizhennykh resheniyakh uravneniya Abelya”, Vestn. Mosk. un-ta. Ser. 15., 2001, no. 3, 5–9 | Zbl

[14] Khromova G. V., “O ravnomernykh priblizheniyakh k resheniyu integralnogo uravneniya Abelya”, Zh. vychisl. mat. mat. fiz., 55:10 (2015), 1703–1712 | Zbl

[15] Khromova G. V., “Ob odnom semeistve operatorov s razryvnoi oblastyu znachenii”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 440–444