Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a5, author = {G. V. Khromova}, title = {Operators with discontinuous range and their applications}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {58--64}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/} }
TY - JOUR AU - G. V. Khromova TI - Operators with discontinuous range and their applications JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 58 EP - 64 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/ LA - ru ID - INTO_2021_200_a5 ER -
G. V. Khromova. Operators with discontinuous range and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 58-64. http://geodesic.mathdoc.fr/item/INTO_2021_200_a5/
[1] Khromova G. V., “O zadache vosstanovleniya funktsii, zadannykh s pogreshnostyu”, Zh. vychisl. mat. mat. fiz., 17:5 (1977), 1161–1171 | DOI | MR | Zbl
[2] Sendov B. Kh., “Modifitsirovannaya funktsiya Steklova”, Dokl. Bolg. akad. nauk., 134:2 (1983), 355–379 | DOI | MR | Zbl
[3] Khromov A. P., Khromova G. V., “Razryvnye operatory Steklova v zadache ravnomernogo priblizheniya proizvodnykh na otrezke”, Zh. vychisl. mat. mat. fiz., 54:9 (2014), 1442–1557 | DOI
[4] Khromova G. V., “O tikhonovskoi regulyarizatsii”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 1:2 (2001), 75–81
[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978
[6] Pikalov V. V., Preobrazhenskii N. G., Rekonstruktivnaya tomografiya v gazodinamike i fizike plazmy, Nauka, Novosibirsk, 1987
[7] Sizikov V. S., Smirnov A. V., Fedorov B. A., “Chislennoe reshenie singulyarnogo integralnogo uravneniya Abelya obobschennym metodom kvadratur”, Izv. vuzov. Mat., 2004, no. 8, 62–70 | MR | Zbl
[8] Preobrazhenskii N. G., Pikalov V. V., Neustoichivye zadachi diagnostiki plazmy, Nauka, Novosibirsk, 1982 | DOI
[9] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR., 151:3 (1963), 501–509 | DOI | MR
[10] Khromova G. V., “Ob otsenkakh pogreshnosti priblezhennykh reshenii uravnenii pervogo roda”, Dokl. RAN., 378:5 (2001), 605–609 | MR | Zbl
[11] Khromova G. V., “Ob odnom sposobe postroeniya metodov regulyarizatsii uravnenii 1 roda”, Zh. vychisl. mat. mat. fiz., 40:7 (2010), 997–1002
[12] Khromova G. V., “Regulyarizatsiya uravneniya Abelya s pomoschyu razryvnogo operatora Steklova”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 14:4 (2014), 599–603 | Zbl
[13] Khromova G. V., “O priblizhennykh resheniyakh uravneniya Abelya”, Vestn. Mosk. un-ta. Ser. 15., 2001, no. 3, 5–9 | Zbl
[14] Khromova G. V., “O ravnomernykh priblizheniyakh k resheniyu integralnogo uravneniya Abelya”, Zh. vychisl. mat. mat. fiz., 55:10 (2015), 1703–1712 | Zbl
[15] Khromova G. V., “Ob odnom semeistve operatorov s razryvnoi oblastyu znachenii”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 440–444