On a method for constructing generalized Bers powers in a complex space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 36-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend the method of generalized powers proposed by L. Bers for one variable to systems of differential equations in spaces of any number of variables, including complex variables. After a brief historical background on the issue, we formulate a general definition of generalized powers. We construct generalized powers for two complex variables $z$ and $\overline{z}$; this construction is a prototype for the multidimensional case. We construct solutions of a three-dimensional generalization of the Cauchy–Riemann system and the corresponding Laplace equations. We introduce binary generalized powers that are analogs of complex powers of the form $z^n\overline{z}^m c$. These structures provides a possibility of generalizing the method of generalized powers to the four-dimensional case, which is important in physics. We show that the techniques of generalized powers can be used for constructing solutions of the Maxwell equations in the classical field theory and the Dirac equations in the quantum theory of electrons.
Keywords: complex space, generalized power, Cauchy-Riemann system.
@article{INTO_2021_200_a3,
     author = {Yu. A. Gladyshev},
     title = {On a method for constructing generalized {Bers} powers in a complex space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {36--44},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a3/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
TI  - On a method for constructing generalized Bers powers in a complex space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 36
EP  - 44
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a3/
LA  - ru
ID  - INTO_2021_200_a3
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%T On a method for constructing generalized Bers powers in a complex space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 36-44
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a3/
%G ru
%F INTO_2021_200_a3
Yu. A. Gladyshev. On a method for constructing generalized Bers powers in a complex space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 36-44. http://geodesic.mathdoc.fr/item/INTO_2021_200_a3/

[1] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961

[2] Gladyshev Yu. A., “Ob odnom sposobe postroeniya formalnykh stepenei”, Mat. sb., 65:4 (1964), 571–575 | MR

[3] Gladyshev Yu. A., “O posledovatelnosti obobschennykh stepenei Bersa s vnutrennei strukturoi”, Mat. zametki., 55:3 (1994), 21–34 | MR

[4] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 1997

[5] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011

[6] Gladyshev Yu. A., “O svoistvakh obobschennykh stepenei Bersa v kompleksnom prostranstve”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 116–117

[7] Sokolov A. A., Ivanenko D. D., Kvantovaya teoriya polya, GITTL, M.-L., 1952

[8] Bers L., Gelbart A., “On a class of differential equation in mechanics of continua”, Q. Appl. Math., 1:2 (1943), 168–189 | DOI

[9] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl