Analysis of the convergence of the algorithm for constructing a convex regression dependence
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 115-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, to solve the problem of constructing a convex approximation to noisy data, we propose an algorithm for constructing convex regression using the active set approach. It is shown that the algorithm converges to the optimal solution and it is found the estimate of its complexity.
Keywords: nonlinear optimization, active set
Mots-clés : monotonic regression, convex regression, segment regression.
@article{INTO_2021_200_a12,
     author = {A. A. Gudkov and S. P. Sidorov and K. A. Spiridonov},
     title = {Analysis of the convergence of the algorithm for constructing a convex regression dependence},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/}
}
TY  - JOUR
AU  - A. A. Gudkov
AU  - S. P. Sidorov
AU  - K. A. Spiridonov
TI  - Analysis of the convergence of the algorithm for constructing a convex regression dependence
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 115
EP  - 125
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/
LA  - ru
ID  - INTO_2021_200_a12
ER  - 
%0 Journal Article
%A A. A. Gudkov
%A S. P. Sidorov
%A K. A. Spiridonov
%T Analysis of the convergence of the algorithm for constructing a convex regression dependence
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 115-125
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/
%G ru
%F INTO_2021_200_a12
A. A. Gudkov; S. P. Sidorov; K. A. Spiridonov. Analysis of the convergence of the algorithm for constructing a convex regression dependence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 115-125. http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/

[1] Gudkov A. A., Spiridonov K. A., Sidorov S. P., “O skhodimosti odnogo algoritma postroeniya segmentnoi regressii”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 144–146

[2] Zhizhchenko A. B., Izaak A. D., “Informatsionnaya sistema Math-Net.Ru. Sovremennoe sostoyanie i perspektivy razvitiya. Impakt-faktory rossiiskikh matematicheskikh zhurnalov”, Usp. mat. nauk., 64:4 (388) (2009), 195–204 | MR | Zbl

[3] Bai J., Perron P., “Estimating and testing linear models with multiple structural changes”, Econometrica., 66:1 (1998), 47–78 | DOI | MR | Zbl

[4] Barlow R., Bartholomew D., Bremner J., Brunk H., Statistical Inference Under Order Restrictions, Wiley, New York, 1972 | Zbl

[5] Burdakov O., Kapyrin I., Vassilevski Y. V., “Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions”, J. Comput. Phys., 231 (2012), 3126–3142 | DOI | MR | Zbl

[6] Chandrasekaran R., Ryu Y. U., Jacob V. S., Hong S., “Isotonic Separation”, INFORMS J. Comput., 17:4 (2005), 462–474 | DOI | MR | Zbl

[7] Daniels H., Velikova M., Monotone Prediction Models in Data Mining, VDM Verlag, Saarbrücken, 2008

[8] Feder P. I., “On asymptotic distribution theory in segmented regression problems – identified case”, Ann. Stat., 3:1 (1975), 49–83 | Zbl

[9] Friedman J., “Multivariate adaptive regression splines”, Ann. Stat., 19 (1991), 1–67

[10] Gallant A., Fuller W., “Fitting segmented polynomial regression models whose join points have to be estimated”, J. Am. Stat. Ass., 68:341 (1973), 144–147 | DOI | Zbl

[11] Gudkov A. A., Mironov S. V., Sidorov S. P., Tyshkevich S. V., “A dual active set algorithm for optimal sparse convex regression”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 23:1 (2019), 113–130 | Zbl

[12] Gutierrez P., Perez-Ortiz M., Sanchez-Monedero J., Fernandez-Navarro F., Hervas-Martinez C., “Ordinal regression methods: survey and experimental study”, IEEE Trans. Knowl. Data Eng., 28:1 (2016), 127–146 | DOI

[13] Hussian M., Grimvall A., Burdakov O., Sysoev O., “Monotonic regression for the detection of temporal trends in environmental quality data”, MATCH Commun. Math. Comput. Chem., 54 (2005), 535-550 | MR | Zbl

[14] Maxwell W. L., Muckstadt J. A., “Establishing consistent and realistic reorder intervals in production-distribution systems”, Oper. Res., 33:6 (1985), 1316–1341 | DOI | Zbl

[15] Meyer M.C., “Inference using shape-restricted regressionsplines”, Ann. Appl. Stat., 2:3 (2008), 1013–1033 | DOI | MR | Zbl

[16] Perron P., Yamamoto Y., “Estimating and testing multiple structural changes in linear models using band spectral regressions”, Econometrics J., 16:3 (2013), 400–429 | DOI | MR

[17] Robertson T., Wright F., Dykstra R., Order Restricted Statistical Inference, Wiley, New York, 1988 | Zbl

[18] Roth M., Buishand T., Jongbloed G., “Trends in moderate rainfall extremes: a regional monotone regression approach”, MATCH Commun. Math. Comput. Chem., 28:22 (2015), 8760–8769

[19] Stone C. J., “The use of polynomial splines and their tensor products in multivariate function estimation”, Ann. Stat., 22:1 (1994), 118–171

[20] Stone C. J., Hansen M. H., Kooperberg C., Truong Y. K., “Polynomial splines and their tensor products in extended linear modeling”, Ann. Stat., 25:4 (1997), 1371–1470 | DOI | Zbl

[21] Wegman E., Wright I., “Splinesin statistics”, J. Am. Stat. Ass., 78 (1983), 351–365 | DOI | Zbl