Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a12, author = {A. A. Gudkov and S. P. Sidorov and K. A. Spiridonov}, title = {Analysis of the convergence of the algorithm for constructing a convex regression dependence}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--125}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/} }
TY - JOUR AU - A. A. Gudkov AU - S. P. Sidorov AU - K. A. Spiridonov TI - Analysis of the convergence of the algorithm for constructing a convex regression dependence JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 115 EP - 125 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/ LA - ru ID - INTO_2021_200_a12 ER -
%0 Journal Article %A A. A. Gudkov %A S. P. Sidorov %A K. A. Spiridonov %T Analysis of the convergence of the algorithm for constructing a convex regression dependence %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 115-125 %V 200 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/ %G ru %F INTO_2021_200_a12
A. A. Gudkov; S. P. Sidorov; K. A. Spiridonov. Analysis of the convergence of the algorithm for constructing a convex regression dependence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 115-125. http://geodesic.mathdoc.fr/item/INTO_2021_200_a12/
[1] Gudkov A. A., Spiridonov K. A., Sidorov S. P., “O skhodimosti odnogo algoritma postroeniya segmentnoi regressii”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 144–146
[2] Zhizhchenko A. B., Izaak A. D., “Informatsionnaya sistema Math-Net.Ru. Sovremennoe sostoyanie i perspektivy razvitiya. Impakt-faktory rossiiskikh matematicheskikh zhurnalov”, Usp. mat. nauk., 64:4 (388) (2009), 195–204 | MR | Zbl
[3] Bai J., Perron P., “Estimating and testing linear models with multiple structural changes”, Econometrica., 66:1 (1998), 47–78 | DOI | MR | Zbl
[4] Barlow R., Bartholomew D., Bremner J., Brunk H., Statistical Inference Under Order Restrictions, Wiley, New York, 1972 | Zbl
[5] Burdakov O., Kapyrin I., Vassilevski Y. V., “Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions”, J. Comput. Phys., 231 (2012), 3126–3142 | DOI | MR | Zbl
[6] Chandrasekaran R., Ryu Y. U., Jacob V. S., Hong S., “Isotonic Separation”, INFORMS J. Comput., 17:4 (2005), 462–474 | DOI | MR | Zbl
[7] Daniels H., Velikova M., Monotone Prediction Models in Data Mining, VDM Verlag, Saarbrücken, 2008
[8] Feder P. I., “On asymptotic distribution theory in segmented regression problems – identified case”, Ann. Stat., 3:1 (1975), 49–83 | Zbl
[9] Friedman J., “Multivariate adaptive regression splines”, Ann. Stat., 19 (1991), 1–67
[10] Gallant A., Fuller W., “Fitting segmented polynomial regression models whose join points have to be estimated”, J. Am. Stat. Ass., 68:341 (1973), 144–147 | DOI | Zbl
[11] Gudkov A. A., Mironov S. V., Sidorov S. P., Tyshkevich S. V., “A dual active set algorithm for optimal sparse convex regression”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 23:1 (2019), 113–130 | Zbl
[12] Gutierrez P., Perez-Ortiz M., Sanchez-Monedero J., Fernandez-Navarro F., Hervas-Martinez C., “Ordinal regression methods: survey and experimental study”, IEEE Trans. Knowl. Data Eng., 28:1 (2016), 127–146 | DOI
[13] Hussian M., Grimvall A., Burdakov O., Sysoev O., “Monotonic regression for the detection of temporal trends in environmental quality data”, MATCH Commun. Math. Comput. Chem., 54 (2005), 535-550 | MR | Zbl
[14] Maxwell W. L., Muckstadt J. A., “Establishing consistent and realistic reorder intervals in production-distribution systems”, Oper. Res., 33:6 (1985), 1316–1341 | DOI | Zbl
[15] Meyer M.C., “Inference using shape-restricted regressionsplines”, Ann. Appl. Stat., 2:3 (2008), 1013–1033 | DOI | MR | Zbl
[16] Perron P., Yamamoto Y., “Estimating and testing multiple structural changes in linear models using band spectral regressions”, Econometrics J., 16:3 (2013), 400–429 | DOI | MR
[17] Robertson T., Wright F., Dykstra R., Order Restricted Statistical Inference, Wiley, New York, 1988 | Zbl
[18] Roth M., Buishand T., Jongbloed G., “Trends in moderate rainfall extremes: a regional monotone regression approach”, MATCH Commun. Math. Comput. Chem., 28:22 (2015), 8760–8769
[19] Stone C. J., “The use of polynomial splines and their tensor products in multivariate function estimation”, Ann. Stat., 22:1 (1994), 118–171
[20] Stone C. J., Hansen M. H., Kooperberg C., Truong Y. K., “Polynomial splines and their tensor products in extended linear modeling”, Ann. Stat., 25:4 (1997), 1371–1470 | DOI | Zbl
[21] Wegman E., Wright I., “Splinesin statistics”, J. Am. Stat. Ass., 78 (1983), 351–365 | DOI | Zbl