The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and ``nonsingular'' derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 86-116

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper devoted to the problem of non-uniqueness of the definition of fractional operators and the influence of this problem on the properties of solutions of optimal-control problems for fractional systems. We consider two optimal-control problems for systems with lumped parameters whose dynamics is described by linear fractional integro-differential equations: the problem of search for a control with minimal norm at given control time and the time-optimal problem at given restriction on the norm of the control. We analyze the problems with the fractional derivative operators in the sense of Erdélyi–Kober, Katugampola, Atangana–Baleanu, and Caputo–Fabrizio. These problems are reduced to the $l$-moment problem and the well-posedness and solvability conditions are obtained. Several examples of the explicit calculation of optimal controls are given and the properties of the solutions obtained that depend on the type of the fractional derivative operator are compared.
Keywords: fractional-order dynamic systems, optimal control, fractional derivatives, $l$-problem of moments.
@article{INTO_2021_199_a9,
     author = {S. S. Postnov},
     title = {The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and ``nonsingular'' derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {86--116},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a9/}
}
TY  - JOUR
AU  - S. S. Postnov
TI  - The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and ``nonsingular'' derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 86
EP  - 116
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a9/
LA  - ru
ID  - INTO_2021_199_a9
ER  - 
%0 Journal Article
%A S. S. Postnov
%T The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and ``nonsingular'' derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 86-116
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a9/
%G ru
%F INTO_2021_199_a9
S. S. Postnov. The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and ``nonsingular'' derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 86-116. http://geodesic.mathdoc.fr/item/INTO_2021_199_a9/