Frames in Walsh analysis, Hadamard matrices, and uniformly distributed sets
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the author's works on the relationship of Walsh analysis with recent results in the theory of orthogonal wavelet bases and the theory of tight frames. Parametric sets for orthogonal wavelets and compactly supported Parseval frames on Vilenkin groups are defined. Methods for constructing equiangular tight frames through Hadamard matrices are described. Also, we note that finite tight frames associated with Walsh functions can be useful for detecting hidden regular structures of uniformly distributed point sets.
Mots-clés : Hadamard matrix
Keywords: Walsh function, Steiner system, wavelet, equiangular tight frame, uniformly distributed set, Vilenkin group.
@article{INTO_2021_199_a2,
     author = {Yu. A. Farkov},
     title = {Frames in {Walsh} analysis, {Hadamard} matrices, and uniformly distributed sets},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a2/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Frames in Walsh analysis, Hadamard matrices, and uniformly distributed sets
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 17
EP  - 30
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a2/
LA  - ru
ID  - INTO_2021_199_a2
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Frames in Walsh analysis, Hadamard matrices, and uniformly distributed sets
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 17-30
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a2/
%G ru
%F INTO_2021_199_a2
Yu. A. Farkov. Frames in Walsh analysis, Hadamard matrices, and uniformly distributed sets. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 17-30. http://geodesic.mathdoc.fr/item/INTO_2021_199_a2/

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981

[2] Andreev N. N., Yudin V. A., “Ekstremalnye raspolozheniya tochek na sfere”, Mat. prosveschenie., 3:1 (1997), 115–125

[3] Bespalov M. S., “Diskretnoe preobrazovanie Krestensona”, Probl. peredachi inform., 46:4 (2010), 91–115 | MR | Zbl

[4] Vilenkin N. Ya., “Ob odnom klasse polnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. mat., 11 (1947), 363–400 | Zbl

[5] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, M., 2008

[6] Dobeshi I., Desyat lektsii po veivletam, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[7] Zalmanzon L. A., Preobrazovaniya Fure, Uolsha, Khaara i ikh primenenie v upravlenii, svyazi i drugikh oblastyakh, Nauka, M., 1989

[8] Istomina M. N., Pevnyi A. B., “O raspolozhenii tochek na sfere i freime Mersedes–Bents”, Mat. prosveschenie., 3:11 (2007), 105–112

[9] Kashin B. S., Kulikova T. Yu., “Zamechanie ob opisanii freimov obschego vida”, Mat. zametki., 72:6 (2002), 941–945 | Zbl

[10] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[11] Malozemov V. N, Masharskii S. M., Osnovy diskretnogo garmonicheskogo analiza, Lan, SPb, 2012

[12] Naimark M. A., “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. mat., 4:3 (1940), 277–318

[13] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M, 2006

[14] Rebrova I. Yu., Chubarikov V. N., Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshev. sb., 19:4 (2018), 118–176 | MR | Zbl

[15] Skriganov M. M., “Neravenstvo Khinchina i teorema Chena”, Algebra i analiz., 23:4 (2011), 179–204

[16] Skriganov M. M., “O srednikh znacheniyakh $L_q$-uklonenii tochechnykh raspredelenii”, Algebra i analiz., 24:6 (2012), 196–225 | MR

[17] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969

[18] Temlyakov V. N., “Nekogerentnye sistemy i pokrytiya v konechnomernykh banakhovykh prostranstva”, Mat. sb., 205:5 (2014), 97–116 | MR | Zbl

[19] Terekhin P. A., “Freimy v banakhovom prostranstve”, Funkts. anal. prilozh., 44:3 (2010), 50–62 | MR | Zbl

[20] Farkov Yu. A., “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. mat., 69:3 (2005), 193–220 | MR | Zbl

[21] Farkov Yu. A., “Biortogonalnye vspleski na gruppakh Vilenkina”, Tr. Mat. in-ta im. V. A. Steklova RAN., 265 (2009), 110–124 | Zbl

[22] Farkov Yu. A., “Diskretnye veivlety i preobrazovanie Vilenkina—Krestensona”, Mat. zametki., 89:6 (2011), 914–928 | Zbl

[23] Farkov Yu. A., “Ortogonalnye vspleski v analize Uolsha”, Sovremennye problemy matematiki i mekhaniki. T. XI. Vyp. 1. Matematika., K 80-letiyu V. A. Skvortsova. Obobschennye integraly i garmonicheskii analiz, eds. Lukashenko T. P., Solodov A. P., Izd-vo MGU, M., 2016, 62–75

[24] Farkov Yu. A., “Parametricheskie mnozhestva dlya freimov v analize Uolsha”, Vestn. Evraz. un-ta im. L. N. Gumileva. Ser. Mat. Inform. Mekh., 124:3 (2018), 89–94

[25] Farkov Yu. A., “Diskretnye veivlet-preobrazovaniya v analize Uolsha”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 160 (2019), 126–136

[26] Farkov Yu. A., “Konechnye freimy Parsevalya v analize Uolsha”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 170 (2019), 118–128

[27] Farkov Yu. A., “Konechnye zhestkie freimy v analize Uolsha”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 425–432

[28] Farkov Yu. A., Robakidze M. G., “Freimy Parsevalya i diskretnoe preobrazovanie Uolsha”, Mat. zametki., 106:3 (2019), 457–469 | MR | Zbl

[29] Farkov Yu. A., Stroganov S. A., “O diskretnykh diadicheskikh veivletakh dlya obrabotki izobrazhenii”, Izv. vuzov. Mat., 2011, no. 7, 57–66 | Zbl

[30] Frolov K. K., “Otsenka sverkhu diskrepansa v metrike $L_p$, $2\leq p\infty$”, Dokl. AN SSSR., 252:4 (1980), 805–807 | MR | Zbl

[31] Chernov V. M., Arifmeticheskie metody sinteza bystrykh algoritmov diskretnykh ortogonalnykh preobrazovanii, Fizmatlit, M., 2007

[32] Albrecht A., Howlett P., Verma G., “Optimal splitting of Parseval frames using Walsh matrices”, Poincaré J. Anal. Appl., 252:2 (2018), 39–58

[33] Alexander J. R., Beck J., Chen W. W. L., “Geometric discrepancy theory and uniform distributions”, Handbook of Discrete and Computational Geometry, ed. Goodman J. E., CRC Press, Boca Raton, Florida, 2017, 331–357

[34] Balonin N. A., Doković D. Ž., Karbovskiy D. A., “Construction of symmetric Hadamard matrices of order $4\nu$ for $\nu=47,73,113$”, Spec. Matrices., 6 (2018), 11–22 | DOI | MR | Zbl

[35] Balonin N. A., Seberry J., “Computer construction conjecture for symmetric Hadamard matrices”, Math. Sci., 43:2 (2018), 137–143 | MR | Zbl

[36] Beck J., Strong Uniformity and Large Dynamical Systems, World Scientific, Hackensack, New Jersey, 2018 | Zbl

[37] Beck J., Chen W. W. L., Strong Uniformity and Large Dynamical Systems, Cambridge Univ. Press, Cambridge, 1987

[38] Bilyk D., Dai F., “Geodesic distance Riesz energy on the sphere”, Trans. Am. Math. Soc., 372:5 (2019), 3141–3166 | DOI | Zbl

[39] Bilyk D., Dick J., Pillichshammer F., eds., Discrepancy Theory, De Gruyter, Berlin, 2020

[40] Chen W. W. L., “On irregularities of distribution, II”, Q. J. Math., Oxf. II. Ser., 34 (1983), 257–279 | DOI | Zbl

[41] Chen W., Skriganov M., “Upper bounds in classical discrepancy theory”, A panorama of discrepancy theory, Cham, 2014, 3–69

[42] Christensen O., An Inroduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016

[43] Davenport H., “Note on irregularities of distributions”, Mathematika., 6:3 (1956), 131–135 | DOI

[44] Dong B., Shen Z., “MRA-based wavelet frames and application”, Math. Image Process., 19 (2013), 7–158 | DOI

[45] Drmota M., Tichy R. F., Sequences, Discrepancies and Applications, Springer-Verlag, Berlin, 1997 | Zbl

[46] Edwards R. E., Gaudry G. I., Littlewood–Paley and Multiplier Theory, Springer-Verlag, Berlin, 1977

[47] Farkov Yu. A., “Wavelets and frames based on Walsh–Dirichlet type kernels”, Commun. Math. Appl., 1:1 (2010), 27–46 | MR | Zbl

[48] Farkov Yu. A., “Examples of frames on the Cantor dyadic group”, J. Math. Sci., 187:1 (2012), 22–34 | DOI | MR | Zbl

[49] Farkov Yu. A., “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincaré J. Anal. Appl., 2015, no. 2, 13–36 | MR | Zbl

[50] Farkov Yu. A., Lebedeva E. A., Skopina M. A., “Wavelet frames on Vilenkin groups and their approximation properties”, Int. J. Wavelets Multiresolut. Inf. Process., 13:5 (2015), 1550036 | DOI | MR | Zbl

[51] Farkov Yu. A., “Nonstationary multiresolution analysis for Vilenkin groups”, Proc. Int. Conf. on Sampling Theory and Applications (Tallinn, Estonia, July 3-7, 2017)), Tallinn, 2017, 595–598

[52] Farkov Yu. A., “Wavelet tight frames in Walsh analysis”, Ann. Univ. Sci. Budapest. Sect. Comp., 49 (2019), 161–177 | Zbl

[53] Farkov Yu. A., “Wavelet frames related to Walsh functions”, Eur. J. Math., 5:1 (2019), 250–267 | DOI | MR | Zbl

[54] Farkov Yu. A., Manchanda P., Siddiqi A. H., Construction of Wavelets through Walsh Functions, Springer, Singapore, 2019 | Zbl

[55] Farkov Yu. A., Rodionov E. A., “On biorthogonal discrete wavelet bases”, Int. J. Wavelets Multiresolut. Inf. Process., 13:1 (2015), 1550002 | DOI | MR | Zbl

[56] Fickus M., Jasper J., King E. J., Mixon D. G., “Equiangular tight frames that contain regular simplices”, Linear Algebra Appl., 555 (2018), 98–138 | DOI | MR | Zbl

[57] Fickus M., Jasper J., Mixon D. G., Peterson J., “Tremain equiangular tight frames”, J. Combin. Theory. Ser. A., 153 (2018), 54–66 | DOI | MR | Zbl

[58] Fickus M., Jasper J., Mixon D. G., Peterson J. D., Watson C. E., “Equiangular tight frames with centroidal symmetry”, Appl. Comput. Harmon. Anal., 44:2 (2018), 476–496 | DOI | MR | Zbl

[59] Fickus M., Jasper J., Mixon D. G., Peterson J. D., Watson C. E., “Polyphase equiangular tight frames and abelian generalized quadrangles”, Appl. Comput. Harmon. Anal., 47:3 (2019), 628–661 | DOI | MR | Zbl

[60] Fickus M., Mixon D. G., Tremain J. C., “Steiner equiangular tight frames”, Linear Algebra Appl., 436:5 (2012), 1014–1027 | DOI | MR | Zbl

[61] Fickus M., Schmitt C. A., “Harmonic equiangular tight frames comprised of regular simplices”, Linear Algebra Appl., 586 (2020), 130–169 | DOI | MR | Zbl

[62] Gajić D. B., Stanković R. S., “Computation of the Vilenkin–Chrestenson transform on a GPU”, J. Multiple Valued Log. Soft Comput., 24:1-4 (2015), 317–340 | Zbl

[63] Han D., Kornelson K., Larson D., Weber E., Frames for Undergraduates, Am. Math. Soc., N.Y., 2008

[64] Hewitt E., Ross K. A., Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations, Springer-Verlag, Berlin, 1994

[65] Krivoshein A. V., Lebedeva E. A., “Uncertainty principle for the Cantor dyadic group”, J. Math. Anal. Appl., 423:2 (2015), 1231–1242 | DOI | MR | Zbl

[66] Krivoshein A., Protasov V., Skopina M., Multivariate Wavelet Frames, Springer, Singapore, 2016 | Zbl

[67] Niederreiter H., Xing C., “Nets, $(t,s)$-sequences, and algebraic geometry”, Random and Quasi-Random Point Sets, eds. Hellekalek P. et al., Springer, NY, 1998, 267–302 | DOI | MR | Zbl

[68] Roth K. F., “On irregularities of distribution, III”, Acta Arithm., 35 (1979), 373–384 | DOI | Zbl

[69] Roth K. F., “On irregularities of distribution, IV”, Acta Arithm., 37 (1980), 67–75 | DOI | Zbl

[70] Schipp F., Wade W. R., Simon P., Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | Zbl

[71] Seberry J., Wysocki B. J., Wysocki T. A., “On some applications of Hadamard matrices”, Metrika., 62:2 (2005), 221–239 | DOI | MR | Zbl

[72] Seberry J., Orthogonal Designs. Hadamard Matrices, Quadratic Forms and Algebras, Springer, Cham, 2017 | Zbl

[73] Skriganov M. M., “Dyadic shift randomization in classical discrepancy theory”, Mathematika., 62:1 (2016), 183–209 | DOI | MR | Zbl

[74] Stanković R. S., Butzer P. L., Schipp F., Wade W. R. (eds.), Dyadic Walsh Analysis from 1924 onwards Walsh–Gibbs–Butzer Dyadic Differentiation in Science. Vol. 2. Extensions and Generalizations, Atlantis Press, Amsterdam, 2015

[75] Stevens M., The Kadison–Singer Property, Springer, Berlin, 2016 | Zbl

[76] van Lint J. H., Introduction to Coding Theory, Springer, Berlin, 1999 | Zbl

[77] Waldron S., An Introduction to Finite Tight Frames, Birkhäuser, New York, 2018 | Zbl