On a heat propagation problem in a system of rods on a tree graph
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to mathematical modeling of heat transfer in a system of rods on a tree graph by a pencil of linear differential operators. We examine the monotonic dependence of eigenvalues of the operator pencil on the parameters of boundary conditions. The problem is reduced to an inverse spectral problem for operators in a finite-dimensional spaces and a numerical solution algorithm for this problem is proposed.
Keywords: pencil of differential operators, inverse spectral problem, geometric graph.
@article{INTO_2021_198_a9,
     author = {Yu. V. Martynova},
     title = {On a heat propagation problem in a system of rods on a tree graph},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/}
}
TY  - JOUR
AU  - Yu. V. Martynova
TI  - On a heat propagation problem in a system of rods on a tree graph
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 89
EP  - 95
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/
LA  - ru
ID  - INTO_2021_198_a9
ER  - 
%0 Journal Article
%A Yu. V. Martynova
%T On a heat propagation problem in a system of rods on a tree graph
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 89-95
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/
%G ru
%F INTO_2021_198_a9
Yu. V. Martynova. On a heat propagation problem in a system of rods on a tree graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 89-95. http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/

[1] Zavgorodnii M. G, Kulaev R. Ch., “O nepreryvnoi zavisimosti tochek spektra kraevoi zadachi na grafe ot parametrov uslovii soglasovaniya”, Vladikavkaz. mat. zh., 6:2 (2004), 10–16 | MR | Zbl

[2] Martynova Yu. V., “Modelnaya obratnaya spektralnaya zadacha dlya operatora Shturma—Liuvillya na geometricheskom grafe tipa «derevo»”, Sist. upravl. inform. tekhnol., 2013, no. 3 (53), 19–23

[3] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005

[4] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., Obratnye zadachi Shturma—Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo MGU, M., 2009

[5] Sadovnichii V. A., Sultanaev Ya. T., Valeev N. F., “Mnogoparametricheskie obratnye spektralnye zadachi i ikh prilozheniya”, Dokl. RAN., 426:4 (2009), 457–460 | Zbl

[6] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratov. ped. in-ta, Saratov, 2001

[7] Ambarzumian V., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53:9-10 (1929), 690–695 | DOI | Zbl