Voir la notice du chapitre de livre
@article{INTO_2021_198_a9,
author = {Yu. V. Martynova},
title = {On a heat propagation problem in a system of rods on a tree graph},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {89--95},
year = {2021},
volume = {198},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/}
}
TY - JOUR AU - Yu. V. Martynova TI - On a heat propagation problem in a system of rods on a tree graph JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 89 EP - 95 VL - 198 UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/ LA - ru ID - INTO_2021_198_a9 ER -
Yu. V. Martynova. On a heat propagation problem in a system of rods on a tree graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 89-95. http://geodesic.mathdoc.fr/item/INTO_2021_198_a9/
[1] Zavgorodnii M. G, Kulaev R. Ch., “O nepreryvnoi zavisimosti tochek spektra kraevoi zadachi na grafe ot parametrov uslovii soglasovaniya”, Vladikavkaz. mat. zh., 6:2 (2004), 10–16 | MR | Zbl
[2] Martynova Yu. V., “Modelnaya obratnaya spektralnaya zadacha dlya operatora Shturma—Liuvillya na geometricheskom grafe tipa «derevo»”, Sist. upravl. inform. tekhnol., 2013, no. 3 (53), 19–23
[3] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005
[4] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., Obratnye zadachi Shturma—Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo MGU, M., 2009
[5] Sadovnichii V. A., Sultanaev Ya. T., Valeev N. F., “Mnogoparametricheskie obratnye spektralnye zadachi i ikh prilozheniya”, Dokl. RAN., 426:4 (2009), 457–460 | Zbl
[6] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratov. ped. in-ta, Saratov, 2001
[7] Ambarzumian V., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53:9-10 (1929), 690–695 | DOI | Zbl