Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_198_a3, author = {Yu. P. Virchenko and A. V. Subbotin}, title = {Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--49}, publisher = {mathdoc}, volume = {198}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/} }
TY - JOUR AU - Yu. P. Virchenko AU - A. V. Subbotin TI - Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 41 EP - 49 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/ LA - ru ID - INTO_2021_198_a3 ER -
%0 Journal Article %A Yu. P. Virchenko %A A. V. Subbotin %T Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 41-49 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/ %G ru %F INTO_2021_198_a3
Yu. P. Virchenko; A. V. Subbotin. Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
[1] Blints R., Zheksh B., Segnetoelektriki i anti-segnetoelektriki: Dinamika reshetki, Mir, M., 1975
[2] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[3] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. elem. chastits atom. yadra., 27:2 (1996), 431–492
[4] Kats E. I., Lebedev V. V., Dinamika zhidkikh kristallov, Nauka, M., 1988
[5] Lyubarskii G. Ya., Teoriya grupp i ee prilozheniya v fizike, Fizmatlit, M., 1958
[6] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967
[7] Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 50:4 (2018), 492–497
[8] Delgado B. B., Porter R. M., “General solution of the inhomogeneous div-curl system and consequences”, Adv. Appl. Clifford Algebras., 27:4 (2017), 3015–-3037 | DOI | MR | Zbl