Voir la notice du chapitre de livre
@article{INTO_2021_198_a3,
author = {Yu. P. Virchenko and A. V. Subbotin},
title = {Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {41--49},
year = {2021},
volume = {198},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/}
}
TY - JOUR
AU - Yu. P. Virchenko
AU - A. V. Subbotin
TI - Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY - 2021
SP - 41
EP - 49
VL - 198
UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
LA - ru
ID - INTO_2021_198_a3
ER -
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 41-49
%V 198
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
%G ru
%F INTO_2021_198_a3
Yu. P. Virchenko; A. V. Subbotin. Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
[1] Blints R., Zheksh B., Segnetoelektriki i anti-segnetoelektriki: Dinamika reshetki, Mir, M., 1975
[2] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[3] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. elem. chastits atom. yadra., 27:2 (1996), 431–492
[4] Kats E. I., Lebedev V. V., Dinamika zhidkikh kristallov, Nauka, M., 1988
[5] Lyubarskii G. Ya., Teoriya grupp i ee prilozheniya v fizike, Fizmatlit, M., 1958
[6] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967
[7] Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 50:4 (2018), 492–497
[8] Delgado B. B., Porter R. M., “General solution of the inhomogeneous div-curl system and consequences”, Adv. Appl. Clifford Algebras., 27:4 (2017), 3015–-3037 | DOI | MR | Zbl