Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the class $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ of second-order differential operators of divergent type that are invariant under translations of $\mathbb{R}^3$ and are transformed covariantly under rotations of $\mathbb{R}^3$. Using such operators, one can construct evolutional equations that describe a translation-invariant dynamics of a solenoidal vector field $\boldsymbol{V}(\boldsymbol{x},t)$ so that each operator of the class $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ determines an infinitesimal $t$-shift of this field. Also, we prove that the class of all evolutional equations for a unimodal vector field $\boldsymbol{V}(\boldsymbol{x},t)$ is trivial.
Keywords: divergent differential operator, translational invariance, vector field, covariance, field flux density, unimodality, solenoidality.
@article{INTO_2021_198_a3,
     author = {Yu. P. Virchenko and A. V. Subbotin},
     title = {Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. V. Subbotin
TI  - Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 41
EP  - 49
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
LA  - ru
ID  - INTO_2021_198_a3
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 41-49
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
%G ru
%F INTO_2021_198_a3
Yu. P. Virchenko; A. V. Subbotin. Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/

[1] Blints R., Zheksh B., Segnetoelektriki i anti-segnetoelektriki: Dinamika reshetki, Mir, M., 1975

[2] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[3] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. elem. chastits atom. yadra., 27:2 (1996), 431–492

[4] Kats E. I., Lebedev V. V., Dinamika zhidkikh kristallov, Nauka, M., 1988

[5] Lyubarskii G. Ya., Teoriya grupp i ee prilozheniya v fizike, Fizmatlit, M., 1958

[6] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967

[7] Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 50:4 (2018), 492–497

[8] Delgado B. B., Porter R. M., “General solution of the inhomogeneous div-curl system and consequences”, Adv. Appl. Clifford Algebras., 27:4 (2017), 3015–-3037 | DOI | MR | Zbl