Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we describe the class $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ of second-order differential operators of divergent type that are invariant under translations of $\mathbb{R}^3$ and are transformed covariantly under rotations of $\mathbb{R}^3$. Using such operators, one can construct evolutional equations that describe a translation-invariant dynamics of a solenoidal vector field $\boldsymbol{V}(\boldsymbol{x},t)$ so that each operator of the class $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ determines an infinitesimal $t$-shift of this field. Also, we prove that the class of all evolutional equations for a unimodal vector field $\boldsymbol{V}(\boldsymbol{x},t)$ is trivial.
Keywords:
divergent differential operator, translational invariance, vector field, covariance, field flux density, unimodality, solenoidality.
@article{INTO_2021_198_a3,
author = {Yu. P. Virchenko and A. V. Subbotin},
title = {Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {41--49},
publisher = {mathdoc},
volume = {198},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/}
}
TY - JOUR
AU - Yu. P. Virchenko
AU - A. V. Subbotin
TI - Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY - 2021
SP - 41
EP - 49
VL - 198
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
LA - ru
ID - INTO_2021_198_a3
ER -
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 41-49
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/
%G ru
%F INTO_2021_198_a3
Yu. P. Virchenko; A. V. Subbotin. Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2021_198_a3/