Nakhushev extremum principle for integro-differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the extremum principle for an integro-differential operator with a kernel of a general form, which generalizes an analog of Fermat's extremum theorem for the Riemann–Liouville fractional derivative. Also, we formulate the weighted extremum principle and the extremum principles for integro-differential operators of convolution type and for some fractional differentiation operators.
Keywords: extremum principle, analog of Fermat's extremum theorem, integro-differential operator, Riemann–Liouville derivative, derivative of distributed order, convolution operator.
@article{INTO_2021_198_a11,
     author = {A. V. Pskhu},
     title = {Nakhushev extremum principle for integro-differential operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - Nakhushev extremum principle for integro-differential operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 103
EP  - 108
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/
LA  - ru
ID  - INTO_2021_198_a11
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T Nakhushev extremum principle for integro-differential operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 103-108
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/
%G ru
%F INTO_2021_198_a11
A. V. Pskhu. Nakhushev extremum principle for integro-differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108. http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/

[1] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987

[2] Mamchuev M. O., “Analog printsipa Zaremby—Zhiro dlya uravneniya drobnoi diffuzii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 12:2 (2010), 32–35

[3] Masaeva O. Kh., “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differ. uravn., 48:3 (2014), 442–446 | MR

[4] Masaeva O. Kh., “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:4 (2014), 31–35

[5] Nakhushev A. M., “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnye uravneniya Volterra tretego roda”, Differ. uravn., 10:1 (1974), 100–111 | MR | Zbl

[6] Nakhushev A. M., “Ob odnoi smeshannoi zadache dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Differ. uravn., 11:1 (1975), 192–195 | MR

[7] Nakhushev A. M., “Zadacha Shturma—Liuvillya dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Dokl. AN SSSR., 234:2 (1977), 308–311 | MR | Zbl

[8] Nakhushev A. M., “K teorii drobnogo ischisleniya”, Differ. uravn., 24:2 (1988), 313–324 | MR | Zbl

[9] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[10] Nakhushev A. M., “K teorii kraevykh zadach dlya nagruzhennykh integralnykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 30–34

[11] Pskhu A. V., “O kraevoi zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Differ. uravn., 51:8 (2015), 1076–1082 | MR | Zbl

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[13] Khubiev K. U., “O printsipe ekstremuma dlya nagruzhennykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 47–50

[14] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo nepreryvnogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki., 103:2 (2018), 295–302 | DOI | MR | Zbl

[15] Al-Refai M., Luchko Yu., “Maximum principle for the fractional diffusion equations with the Riemann–Liouville fractional derivative and its applications”, Fract. Calculus Appl. Anal., 17:2 (2014), 483–498 | DOI | MR | Zbl

[16] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo nepreryvnogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki., 103:2 (2018), 295–302 | DOI | MR | Zbl

[17] Al-Refai M., Luchko Yu., “Maximum principle for the fractional diffusion equations with the Riemann–Liouville fractional derivative and its applications”, Fract. Calculus Appl. Anal., 17:2 (2014), 483–498 | DOI | MR | Zbl