Nakhushev extremum principle for integro-differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the extremum principle for an integro-differential operator with a kernel of a general form, which generalizes an analog of Fermat's extremum theorem for the Riemann–Liouville fractional derivative. Also, we formulate the weighted extremum principle and the extremum principles for integro-differential operators of convolution type and for some fractional differentiation operators.
Keywords: extremum principle, analog of Fermat's extremum theorem, integro-differential operator, Riemann–Liouville derivative, derivative of distributed order, convolution operator.
@article{INTO_2021_198_a11,
     author = {A. V. Pskhu},
     title = {Nakhushev extremum principle for integro-differential operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - Nakhushev extremum principle for integro-differential operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 103
EP  - 108
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/
LA  - ru
ID  - INTO_2021_198_a11
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T Nakhushev extremum principle for integro-differential operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 103-108
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/
%G ru
%F INTO_2021_198_a11
A. V. Pskhu. Nakhushev extremum principle for integro-differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108. http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/