Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_198_a11, author = {A. V. Pskhu}, title = {Nakhushev extremum principle for integro-differential operators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {103--108}, publisher = {mathdoc}, volume = {198}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/} }
TY - JOUR AU - A. V. Pskhu TI - Nakhushev extremum principle for integro-differential operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 103 EP - 108 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/ LA - ru ID - INTO_2021_198_a11 ER -
%0 Journal Article %A A. V. Pskhu %T Nakhushev extremum principle for integro-differential operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 103-108 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/ %G ru %F INTO_2021_198_a11
A. V. Pskhu. Nakhushev extremum principle for integro-differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108. http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/
[1] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987
[2] Mamchuev M. O., “Analog printsipa Zaremby—Zhiro dlya uravneniya drobnoi diffuzii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 12:2 (2010), 32–35
[3] Masaeva O. Kh., “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differ. uravn., 48:3 (2014), 442–446 | MR
[4] Masaeva O. Kh., “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:4 (2014), 31–35
[5] Nakhushev A. M., “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnye uravneniya Volterra tretego roda”, Differ. uravn., 10:1 (1974), 100–111 | MR | Zbl
[6] Nakhushev A. M., “Ob odnoi smeshannoi zadache dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Differ. uravn., 11:1 (1975), 192–195 | MR
[7] Nakhushev A. M., “Zadacha Shturma—Liuvillya dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Dokl. AN SSSR., 234:2 (1977), 308–311 | MR | Zbl
[8] Nakhushev A. M., “K teorii drobnogo ischisleniya”, Differ. uravn., 24:2 (1988), 313–324 | MR | Zbl
[9] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[10] Nakhushev A. M., “K teorii kraevykh zadach dlya nagruzhennykh integralnykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 30–34
[11] Pskhu A. V., “O kraevoi zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Differ. uravn., 51:8 (2015), 1076–1082 | MR | Zbl
[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[13] Khubiev K. U., “O printsipe ekstremuma dlya nagruzhennykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 47–50
[14] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo nepreryvnogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki., 103:2 (2018), 295–302 | DOI | MR | Zbl
[15] Al-Refai M., Luchko Yu., “Maximum principle for the fractional diffusion equations with the Riemann–Liouville fractional derivative and its applications”, Fract. Calculus Appl. Anal., 17:2 (2014), 483–498 | DOI | MR | Zbl
[16] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo nepreryvnogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki., 103:2 (2018), 295–302 | DOI | MR | Zbl
[17] Al-Refai M., Luchko Yu., “Maximum principle for the fractional diffusion equations with the Riemann–Liouville fractional derivative and its applications”, Fract. Calculus Appl. Anal., 17:2 (2014), 483–498 | DOI | MR | Zbl