Nakhushev extremum principle for integro-differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the extremum principle for an integro-differential operator with a kernel of a general form, which generalizes an analog of Fermat's extremum theorem for the Riemann–Liouville fractional derivative. Also, we formulate the weighted extremum principle and the extremum principles for integro-differential operators of convolution type and for some fractional differentiation operators.
Keywords:
extremum principle, analog of Fermat's extremum theorem, integro-differential operator, Riemann–Liouville derivative, derivative of distributed order, convolution operator.
@article{INTO_2021_198_a11,
author = {A. V. Pskhu},
title = {Nakhushev extremum principle for integro-differential operators},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {103--108},
publisher = {mathdoc},
volume = {198},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/}
}
TY - JOUR AU - A. V. Pskhu TI - Nakhushev extremum principle for integro-differential operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 103 EP - 108 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/ LA - ru ID - INTO_2021_198_a11 ER -
%0 Journal Article %A A. V. Pskhu %T Nakhushev extremum principle for integro-differential operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 103-108 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/ %G ru %F INTO_2021_198_a11
A. V. Pskhu. Nakhushev extremum principle for integro-differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 103-108. http://geodesic.mathdoc.fr/item/INTO_2021_198_a11/