Geometry of orbits of vector fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study geometric and topological properties of vector fields on Riemannian manifolds of constant and nonnegative curvature, including Killing vector fields. We construct a completely integrable family of vector fields such that its orbits form a foliation whose set of singular fibers consists of two circles and regular fibers are two-dimensional tori. The solenoidal character of Killing vector fields on three-dimensional Euclidean space is also proved.
Keywords: vector field, Killing vector field, roughness of vector fields.
@article{INTO_2021_197_a7,
     author = {Zh. O. Aslonov},
     title = {Geometry of orbits of vector fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/}
}
TY  - JOUR
AU  - Zh. O. Aslonov
TI  - Geometry of orbits of vector fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 69
EP  - 77
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
LA  - ru
ID  - INTO_2021_197_a7
ER  - 
%0 Journal Article
%A Zh. O. Aslonov
%T Geometry of orbits of vector fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 69-77
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
%G ru
%F INTO_2021_197_a7
Zh. O. Aslonov. Geometry of orbits of vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77. http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/