Geometry of orbits of vector fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study geometric and topological properties of vector fields on Riemannian manifolds of constant and nonnegative curvature, including Killing vector fields. We construct a completely integrable family of vector fields such that its orbits form a foliation whose set of singular fibers consists of two circles and regular fibers are two-dimensional tori. The solenoidal character of Killing vector fields on three-dimensional Euclidean space is also proved.
Keywords: vector field, Killing vector field, roughness of vector fields.
@article{INTO_2021_197_a7,
     author = {Zh. O. Aslonov},
     title = {Geometry of orbits of vector fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/}
}
TY  - JOUR
AU  - Zh. O. Aslonov
TI  - Geometry of orbits of vector fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 69
EP  - 77
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
LA  - ru
ID  - INTO_2021_197_a7
ER  - 
%0 Journal Article
%A Zh. O. Aslonov
%T Geometry of orbits of vector fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 69-77
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
%G ru
%F INTO_2021_197_a7
Zh. O. Aslonov. Geometry of orbits of vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77. http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/

[1] Aslonov Zh. O., “Ob odnoi negruboi dinamicheskoi sisteme na tore”, Vestn. Udmurt. un-ta., 2 (2008), 25–26

[2] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2 (2011), 5–7

[3] Aslonov Zh. O. Narmanov A. Ya., “O grubosti irratsionalnoi obmotki”, Vestn. Nats. un-ta Uzbekistana., 2 (2009), 48–51

[4] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Vestn. Nats. un-ta Uzbekistana., 2 (2010), 148–151

[5] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Tez. dokl. Mezhdunar. nauch. konf. «Metricheskaya geometriya poverkhnostei i mnogogrannikov» (Moskva, 18–21 avgusta 2010 g.), M., 2010, 8–9

[6] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. mat. zh., 49:2 (2008), 497–514 | Zbl

[7] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl

[8] Narmanov A. Ya., Aslonov Zh. O., “Ob odnoi dinamicheskoi sisteme na dvumernom tore”, Vestn. Nats. un-ta Uzbekistana., 2 (2006), 48–51

[9] Aslonov J., “Second-order vector-differeneial operations”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 21–23

[10] Aslonov J. O., Narmanov A. Ya., “On the roughness of the irrational winding of a high -dimensional torus”, Proc. 3rd Congr. World Math. Soc. of Turkic Countries (Almaty, June 30–-July 4, 2009), 2009, 47–48

[11] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | Zbl

[12] Molino P., “Orbit-like foliations”, Geometric Study of Foliations, World Scientific, Tokyo, 1993, 97–119

[13] Nagano T., “Linear differential systems with singularities and application to transitive Lie algebras”, J. Math. Soc. Jpn., 18 (1968), 338–404

[14] Narmanov A., Kaypnazarova G., “Foliation theory and its applications”, TWMS J. Pure Appl. Math., 2:1 (2011), 112–126 | MR | Zbl

[15] Narmanov A., Sharipov A., “On the isometries of foliated manifold”, TWMS J. Pure Appl. Math., 2:1 (2011), 127–133 | MR | Zbl

[16] Sussmann H., Levitt N., “On controllability by means of two vector fields”, SIAM J. Control, 13:6 (1975), 1271–1281 | DOI | MR | Zbl