Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_197_a7, author = {Zh. O. Aslonov}, title = {Geometry of orbits of vector fields}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--77}, publisher = {mathdoc}, volume = {197}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/} }
Zh. O. Aslonov. Geometry of orbits of vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77. http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
[1] Aslonov Zh. O., “Ob odnoi negruboi dinamicheskoi sisteme na tore”, Vestn. Udmurt. un-ta., 2 (2008), 25–26
[2] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2 (2011), 5–7
[3] Aslonov Zh. O. Narmanov A. Ya., “O grubosti irratsionalnoi obmotki”, Vestn. Nats. un-ta Uzbekistana., 2 (2009), 48–51
[4] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Vestn. Nats. un-ta Uzbekistana., 2 (2010), 148–151
[5] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Tez. dokl. Mezhdunar. nauch. konf. «Metricheskaya geometriya poverkhnostei i mnogogrannikov» (Moskva, 18–21 avgusta 2010 g.), M., 2010, 8–9
[6] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. mat. zh., 49:2 (2008), 497–514 | Zbl
[7] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl
[8] Narmanov A. Ya., Aslonov Zh. O., “Ob odnoi dinamicheskoi sisteme na dvumernom tore”, Vestn. Nats. un-ta Uzbekistana., 2 (2006), 48–51
[9] Aslonov J., “Second-order vector-differeneial operations”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 21–23
[10] Aslonov J. O., Narmanov A. Ya., “On the roughness of the irrational winding of a high -dimensional torus”, Proc. 3rd Congr. World Math. Soc. of Turkic Countries (Almaty, June 30–-July 4, 2009), 2009, 47–48
[11] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | Zbl
[12] Molino P., “Orbit-like foliations”, Geometric Study of Foliations, World Scientific, Tokyo, 1993, 97–119
[13] Nagano T., “Linear differential systems with singularities and application to transitive Lie algebras”, J. Math. Soc. Jpn., 18 (1968), 338–404
[14] Narmanov A., Kaypnazarova G., “Foliation theory and its applications”, TWMS J. Pure Appl. Math., 2:1 (2011), 112–126 | MR | Zbl
[15] Narmanov A., Sharipov A., “On the isometries of foliated manifold”, TWMS J. Pure Appl. Math., 2:1 (2011), 127–133 | MR | Zbl
[16] Sussmann H., Levitt N., “On controllability by means of two vector fields”, SIAM J. Control, 13:6 (1975), 1271–1281 | DOI | MR | Zbl