Geometry of orbits of vector fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study geometric and topological properties of vector fields on Riemannian manifolds of constant and nonnegative curvature, including Killing vector fields. We construct a completely integrable family of vector fields such that its orbits form a foliation whose set of singular fibers consists of two circles and regular fibers are two-dimensional tori. The solenoidal character of Killing vector fields on three-dimensional Euclidean space is also proved.
Keywords: vector field, Killing vector field, roughness of vector fields.
@article{INTO_2021_197_a7,
     author = {Zh. O. Aslonov},
     title = {Geometry of orbits of vector fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--77},
     year = {2021},
     volume = {197},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/}
}
TY  - JOUR
AU  - Zh. O. Aslonov
TI  - Geometry of orbits of vector fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 69
EP  - 77
VL  - 197
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
LA  - ru
ID  - INTO_2021_197_a7
ER  - 
%0 Journal Article
%A Zh. O. Aslonov
%T Geometry of orbits of vector fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 69-77
%V 197
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/
%G ru
%F INTO_2021_197_a7
Zh. O. Aslonov. Geometry of orbits of vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 69-77. http://geodesic.mathdoc.fr/item/INTO_2021_197_a7/

[1] Aslonov Zh. O., “Ob odnoi negruboi dinamicheskoi sisteme na tore”, Vestn. Udmurt. un-ta., 2 (2008), 25–26

[2] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2 (2011), 5–7

[3] Aslonov Zh. O. Narmanov A. Ya., “O grubosti irratsionalnoi obmotki”, Vestn. Nats. un-ta Uzbekistana., 2 (2009), 48–51

[4] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Vestn. Nats. un-ta Uzbekistana., 2 (2010), 148–151

[5] Aslonov Zh. O. Narmanov A. Ya., “O grubosti dinamicheskikh polisistem”, Tez. dokl. Mezhdunar. nauch. konf. «Metricheskaya geometriya poverkhnostei i mnogogrannikov» (Moskva, 18–21 avgusta 2010 g.), M., 2010, 8–9

[6] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. mat. zh., 49:2 (2008), 497–514 | Zbl

[7] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl

[8] Narmanov A. Ya., Aslonov Zh. O., “Ob odnoi dinamicheskoi sisteme na dvumernom tore”, Vestn. Nats. un-ta Uzbekistana., 2 (2006), 48–51

[9] Aslonov J., “Second-order vector-differeneial operations”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 21–23

[10] Aslonov J. O., Narmanov A. Ya., “On the roughness of the irrational winding of a high -dimensional torus”, Proc. 3rd Congr. World Math. Soc. of Turkic Countries (Almaty, June 30–-July 4, 2009), 2009, 47–48

[11] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | Zbl

[12] Molino P., “Orbit-like foliations”, Geometric Study of Foliations, World Scientific, Tokyo, 1993, 97–119

[13] Nagano T., “Linear differential systems with singularities and application to transitive Lie algebras”, J. Math. Soc. Jpn., 18 (1968), 338–404

[14] Narmanov A., Kaypnazarova G., “Foliation theory and its applications”, TWMS J. Pure Appl. Math., 2:1 (2011), 112–126 | MR | Zbl

[15] Narmanov A., Sharipov A., “On the isometries of foliated manifold”, TWMS J. Pure Appl. Math., 2:1 (2011), 127–133 | MR | Zbl

[16] Sussmann H., Levitt N., “On controllability by means of two vector fields”, SIAM J. Control, 13:6 (1975), 1271–1281 | DOI | MR | Zbl