Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 56-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D \subset V(M) $ be a family of smooth vector fields defined on a manifold $M$. We examine properties of orbits of a family of Killing vector fields in Euclidean spaces and prove the existence of two Killing vector fields in Euclidean spaces such that the orbit of a family consisting of these vector fields covers the whole Euclidean space. A classification of orbits of Killing vector fields in Euclidean spaces is given.
Keywords: smooth manifold, Killing vector field, Lie algebra, Lie bracket, controllability.
Mots-clés : orbit
@article{INTO_2021_197_a5,
     author = {S. S. Saitova},
     title = {Geometric classification of orbits of a family of {Killing} vector fields in {Euclidean} spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/}
}
TY  - JOUR
AU  - S. S. Saitova
TI  - Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 56
EP  - 61
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/
LA  - ru
ID  - INTO_2021_197_a5
ER  - 
%0 Journal Article
%A S. S. Saitova
%T Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 56-61
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/
%G ru
%F INTO_2021_197_a5
S. S. Saitova. Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 56-61. http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/

[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[2] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. mat. zh., 49:3 (2008), 497–514 | MR | Zbl

[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1984

[4] Narmanov A. Ya., Aslonov Zh. O., “Geometriya orbit vektornykh polei Killinga”, Uzbek. mat. zh., 2 (2012), 77–85

[5] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[6] Narmanov A. Ya., Saitova S. S., “O geometrii mnozhestva dostizhimosti vektornykh polei”, Differ. uravn., 53:3 (2017), 321–328 | MR

[7] Narmanov A. Ya., Saitova S. S., “O geometrii vektornykh polei”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 144, 2018, 81-–87

[8] Postnikov M. M., Lektsii po geometrii. Semestr 3. Gladkie mnogoobraziya, Nauka, M., 1987

[9] Saitova S. S., “Kommutiruyuschie vektornye polya Killinga”, Uzbek. mat. zh., 1 (2013), 109–117 | MR

[10] Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Uzbek. mat. zh., 4 (2016), 106–112 | MR

[11] Brockett R. W., Millman R. S., Sussmann H. J. (eds.)., Differential Geometric Control Theory, Birkhäuser, Boston, 1983 | Zbl

[12] Jakubczyk B., Respondek W. (eds.), Geometry of Feedback and Optimal Control, Marcel Dekker, New York, 1997

[13] Jurdjevic V., Geometric Control Theory, Cambridge Univ. Press, Cambridge, 1997 | Zbl

[14] Killing W., “Über die Grundlagen der Geometrie”, J. Reine Angew. Math., 109 (1892), 121–186 | MR

[15] Kleinsteuber M., Hueper K., Silva Leite F., “Complete Controllability of the $N$-sphere: A constructive proof”, Proc. 3rd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (Nagoya, Japan, 19–21 July, 2006), Austr. Natl. Univ., 2006, 143–146

[16] Kobayashi S., “Fixed points of isometries”, Nagoya Math. J., 13 (1958), 63–68 | DOI | MR | Zbl

[17] Narmanov A. Ya., Saitova S. S., “Foliations defined by closed differential 1-forms”, Int. J. Geom., 3:1 (2014), 37–43 | Zbl

[18] Sachkov Yu., “Control Theory on Lie Groups”, J. Math. Sci., 156:3 (2009), 381–439 | DOI | MR | Zbl

[19] Sussmann H. J. (ed.), Nonlinear Controllability and Optimal Control, Marcel Dekker, New York, 1990 | Zbl

[20] Zimmerman J., “Optimal control of the sphere $S^n$ rolling on $E^n$”, Math. Control Signals Syst., 17 (2005), 14–37 | DOI | Zbl