Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 56-61
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D \subset V(M) $ be a family of smooth vector fields defined on a manifold $M$. We examine properties of orbits of a family of Killing vector fields in Euclidean spaces and prove the existence of two Killing vector fields in Euclidean spaces such that the orbit of a family consisting of these vector fields covers the whole Euclidean space. A classification of orbits of Killing vector fields in Euclidean spaces is given.
Keywords:
smooth manifold, Killing vector field, Lie algebra, Lie bracket, controllability.
Mots-clés : orbit
Mots-clés : orbit
@article{INTO_2021_197_a5,
author = {S. S. Saitova},
title = {Geometric classification of orbits of a family of {Killing} vector fields in {Euclidean} spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {56--61},
publisher = {mathdoc},
volume = {197},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/}
}
TY - JOUR AU - S. S. Saitova TI - Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 56 EP - 61 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/ LA - ru ID - INTO_2021_197_a5 ER -
%0 Journal Article %A S. S. Saitova %T Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 56-61 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/ %G ru %F INTO_2021_197_a5
S. S. Saitova. Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 56-61. http://geodesic.mathdoc.fr/item/INTO_2021_197_a5/