Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_197_a4, author = {D. Khadzhiev and G. R. Beshimov}, title = {Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--55}, publisher = {mathdoc}, volume = {197}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/} }
TY - JOUR AU - D. Khadzhiev AU - G. R. Beshimov TI - Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 46 EP - 55 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/ LA - ru ID - INTO_2021_197_a4 ER -
%0 Journal Article %A D. Khadzhiev %A G. R. Beshimov %T Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 46-55 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/ %G ru %F INTO_2021_197_a4
D. Khadzhiev; G. R. Beshimov. Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 46-55. http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/
[1] Khadzhiev Dzh., Prilozhenie teorii invariantnov k differentsialnoi geometrii krivykh, Fan, Tashkent, 1988
[2] Berger M., Geometry, Springer-Verlag, Berlin–Heidelberg, 1987
[3] Dieudonné J. A., Carrell J. B., Invariant Theory, Academic Press, New York–London, 1971 | Zbl
[4] Greub W. H., Linear Algebra, Springer-Verlag, New York, 1967 | Zbl
[5] Gürsoy O., Incesu M., “LS(2)-equivalence conditions of control points and application to planar Bezier curves”, New Trends Math. Sci., 3:5 (2017), 70–84 | DOI
[6] Höfer R., “$m$-Point invariants of real geometries”, Beitrage Alg. Geom., 40 (1999), 261–266 | Zbl
[7] Khadjiev D., “Projective invariants of $m$-tuples in the one-dimensional projective space”, Uzbek Math. J., 1 (2019), 60–72 | MR | Zbl
[8] Khadjiev D., Beshimov G., “Complete systems of $SO(2,\mathbb{R})$-invariants of mappings of a fixed set to the two-dimensional Euclidean space”, Proc. Int. Conf. “Modern Problems of Geometry and Topology and Their Applications”, Tashkent, Uzbekistan, 2019
[9] Khadjiev D., Göksal Y., “Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space”, Adv. Appl. Clifford Alg., 26 (2016), 645–668 | DOI | MR | Zbl
[10] Mumford D., Fogarty J., Geometric Invariant Theory, Springer-Verlag, Berlin–Heidelberg, 1994 | Zbl
[11] Mundy J. L., Zisserman A., Forsyth D. D., Applications of Invariance in Computer Vision, Springer-Verlag, Berlin–Heidelberg–New York, 1994
[12] O'Rourke J., Computational Geometry in C, Cambridge Univ. Press, 1997
[13] Ören I., “Equivalence conditions of two Bézier curves in the Euclidean geometry”, Iran. J. Sci. Technol. Trans. Sci., 42:3 (2018), 1563–1577 | DOI | MR | Zbl
[14] Ören I., “On invariants of $m$-vectors in Lorentzian geometry”, Int. Electron. J. Geom., 9:1 (2016), 38–44 | DOI | MR | Zbl
[15] Reiss T. H., Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin–Heidelberg–New York, 1993 | Zbl
[16] Sibirskii K. S., Introduction to the Algebraic Invariants of Differential Equations, Manchester Univ. Press, New York, 1988 | Zbl
[17] Springer T. A., Invariant Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | Zbl
[18] Weyl H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946 | Zbl