Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 46-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{Q}$ ne the two-dimensional vector space over the field of rational numbers $\mathbb{Q}$ and $\langle x,y\rangle=x_{1}y_{1}+px_{2}y_{2}$ be a bilinear form on $\mathbb{Q}^{2}$, where $p=1$ or $p=p_{1}\cdot p_{2}\cdot\ldots\cdot p_{n}$; here $p_{j}$ are prime numbers such that $p_{k}\neq p_{l}$ for $k\neq l$, $k\le n$, and $l\le n$. We denote by $\mathrm{O}(2,p,\mathbb{Q})$ the group of all linear transformations of $\mathbb{Q}^{2}$ that preserve the form $\langle x,y\rangle$ and set $\mathrm{SO}(2,p,\mathbb{Q})=\{g\in \mathrm{O}(2,p,\mathbb{Q}): \det(g)=1\}$. This paper is devoted to the problem on the $G$-equivalence of finite sequences of points in $\mathbb{Q}^{2}$ for the group $\mathrm{SO}(2,p,\mathbb{Q})$. We obtain a complete system of $G$-invariants of finite sequences of points in $\mathbb{Q}^{2}$ for the group $G=\mathrm{SO}(2,p,\mathbb{Q})$.
Mots-clés : invariant, group.
Keywords: metric space
@article{INTO_2021_197_a4,
     author = {D. Khadzhiev and G. R. Beshimov},
     title = {Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/}
}
TY  - JOUR
AU  - D. Khadzhiev
AU  - G. R. Beshimov
TI  - Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 46
EP  - 55
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/
LA  - ru
ID  - INTO_2021_197_a4
ER  - 
%0 Journal Article
%A D. Khadzhiev
%A G. R. Beshimov
%T Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 46-55
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/
%G ru
%F INTO_2021_197_a4
D. Khadzhiev; G. R. Beshimov. Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 46-55. http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/