Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{Q}$ ne the two-dimensional vector space over the field of rational numbers $\mathbb{Q}$ and $\langle x,y\rangle=x_{1}y_{1}+px_{2}y_{2}$ be a bilinear form on $\mathbb{Q}^{2}$, where $p=1$ or $p=p_{1}\cdot p_{2}\cdot\ldots\cdot p_{n}$; here $p_{j}$ are prime numbers such that $p_{k}\neq p_{l}$ for $k\neq l$, $k\le n$, and $l\le n$. We denote by $\mathrm{O}(2,p,\mathbb{Q})$ the group of all linear transformations of $\mathbb{Q}^{2}$ that preserve the form $\langle x,y\rangle$ and set $\mathrm{SO}(2,p,\mathbb{Q})=\{g\in \mathrm{O}(2,p,\mathbb{Q}): \det(g)=1\}$. This paper is devoted to the problem on the $G$-equivalence of finite sequences of points in $\mathbb{Q}^{2}$ for the group $\mathrm{SO}(2,p,\mathbb{Q})$. We obtain a complete system of $G$-invariants of finite sequences of points in $\mathbb{Q}^{2}$ for the group $G=\mathrm{SO}(2,p,\mathbb{Q})$.
Mots-clés : invariant, group.
Keywords: metric space
@article{INTO_2021_197_a4,
     author = {D. Khadzhiev and G. R. Beshimov},
     title = {Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/}
}
TY  - JOUR
AU  - D. Khadzhiev
AU  - G. R. Beshimov
TI  - Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 46
EP  - 55
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/
LA  - ru
ID  - INTO_2021_197_a4
ER  - 
%0 Journal Article
%A D. Khadzhiev
%A G. R. Beshimov
%T Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 46-55
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/
%G ru
%F INTO_2021_197_a4
D. Khadzhiev; G. R. Beshimov. Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 46-55. http://geodesic.mathdoc.fr/item/INTO_2021_197_a4/

[1] Khadzhiev Dzh., Prilozhenie teorii invariantnov k differentsialnoi geometrii krivykh, Fan, Tashkent, 1988

[2] Berger M., Geometry, Springer-Verlag, Berlin–Heidelberg, 1987

[3] Dieudonné J. A., Carrell J. B., Invariant Theory, Academic Press, New York–London, 1971 | Zbl

[4] Greub W. H., Linear Algebra, Springer-Verlag, New York, 1967 | Zbl

[5] Gürsoy O., Incesu M., “LS(2)-equivalence conditions of control points and application to planar Bezier curves”, New Trends Math. Sci., 3:5 (2017), 70–84 | DOI

[6] Höfer R., “$m$-Point invariants of real geometries”, Beitrage Alg. Geom., 40 (1999), 261–266 | Zbl

[7] Khadjiev D., “Projective invariants of $m$-tuples in the one-dimensional projective space”, Uzbek Math. J., 1 (2019), 60–72 | MR | Zbl

[8] Khadjiev D., Beshimov G., “Complete systems of $SO(2,\mathbb{R})$-invariants of mappings of a fixed set to the two-dimensional Euclidean space”, Proc. Int. Conf. “Modern Problems of Geometry and Topology and Their Applications”, Tashkent, Uzbekistan, 2019

[9] Khadjiev D., Göksal Y., “Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space”, Adv. Appl. Clifford Alg., 26 (2016), 645–668 | DOI | MR | Zbl

[10] Mumford D., Fogarty J., Geometric Invariant Theory, Springer-Verlag, Berlin–Heidelberg, 1994 | Zbl

[11] Mundy J. L., Zisserman A., Forsyth D. D., Applications of Invariance in Computer Vision, Springer-Verlag, Berlin–Heidelberg–New York, 1994

[12] O'Rourke J., Computational Geometry in C, Cambridge Univ. Press, 1997

[13] Ören I., “Equivalence conditions of two Bézier curves in the Euclidean geometry”, Iran. J. Sci. Technol. Trans. Sci., 42:3 (2018), 1563–1577 | DOI | MR | Zbl

[14] Ören I., “On invariants of $m$-vectors in Lorentzian geometry”, Int. Electron. J. Geom., 9:1 (2016), 38–44 | DOI | MR | Zbl

[15] Reiss T. H., Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin–Heidelberg–New York, 1993 | Zbl

[16] Sibirskii K. S., Introduction to the Algebraic Invariants of Differential Equations, Manchester Univ. Press, New York, 1988 | Zbl

[17] Springer T. A., Invariant Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | Zbl

[18] Weyl H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946 | Zbl