Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_197_a2, author = {A. Ya. Narmanov}, title = {Stability of completely controllable systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {28--35}, publisher = {mathdoc}, volume = {197}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/} }
TY - JOUR AU - A. Ya. Narmanov TI - Stability of completely controllable systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 28 EP - 35 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/ LA - ru ID - INTO_2021_197_a2 ER -
A. Ya. Narmanov. Stability of completely controllable systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/
[1] Azamov A. A., Narmanov A. Ya., “O predelnykh mnozhestvakh orbit sistem vektornykh polei”, Differ. uravn., 40:2 (2004), 257–260 | MR | Zbl
[2] Narmanov A. Ya., “O mnozhestvakh upravlyaemosti sistem upravleniya, yavlyayuschikhsya sloyami sloeniya korazmernosti odin”, Differ. uravn., 19:9 (1983), 1627–1630 | MR
[3] Narmanov A. Ya., “Teorema stabilnosti dlya nekompaktnykh sloev sloeniya korazmernosti odin”, Vestn. LGU., 1983, no. 9, 100–102 | MR | Zbl
[4] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 21:9 (1985), 1504–1508 | MR
[5] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 31:4 (1995), 597–600 | MR
[6] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl
[7] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 33:10 (1997), 1334–1338 | MR | Zbl
[8] Narmanov A. Ya., “O stabilnosti vpolne upravlyaemykh sistem”, Differ. uravn., 36:10 (2000), 1336–1344 | MR | Zbl
[9] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl
[10] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differ. uravn., 4:4 (1968), 606–617 | Zbl
[11] Petrov N. N., “Upravlyaemye sistemy, podobnye sistemam s vypukloi vektogrammoi”, Vestn. LGU., 1974, no. 1, 63–69 | Zbl
[12] Tamura I., Topologiya sloenii, Mir, M., 1979
[13] Gauthier J. P., Bornard G., “An openness condition for the controllability of nonlinear systems”, J. Control Optim., 20:6 (1982), 708–714 | DOI
[14] Hermann R., “On the differential geometry of foliations”, Ann. Math., 72:3 (1960), 445–457 | DOI | MR | Zbl
[15] Inaba T., “On the stability of proper leaves of codimension one foliations”, J. Math. Soc. Jpn., 29:4 (1977), 771–778 | DOI | Zbl
[16] Molino P., Riemaninan Foliations, Birkhäuser, Boston–Basel, 1988
[17] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl
[18] Schweitzer P. A., “Some problems in foliation theory and related areas”, Lect. Notes Math., 652 (1978), 240–252 | DOI | Zbl
[19] Stefan P., “Accessibility and foliations with singularities”, Bull. Am. Math. Soc., 80:6 (1974), 1142–1145 | DOI | Zbl
[20] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | Zbl
[21] Sussmann H., “Some properties of vector field systems that are not altered by small perturbations”, J. Differ. Equations., 20 (1976), 292–315 | DOI | Zbl
[22] Tondeur Ph., Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | Zbl