Stability of completely controllable systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we discuss the stability of completely controllable systems defined on smooth manifolds. It is known that the controllability sets of symmetric systems generate singular foliations. In the case where the controllability sets have the same dimension, regular foliation arise. Thus, we can apply the methods of foliation theory to problems in control theory. In this paper, we present some results on the possibility of applying theorems on the stability of layers to the problem on the stability of completely controllable systems.
Keywords: control system, controllability set, completely controllable system, singular foliation.
Mots-clés : orbit
@article{INTO_2021_197_a2,
     author = {A. Ya. Narmanov},
     title = {Stability of completely controllable systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
TI  - Stability of completely controllable systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 28
EP  - 35
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/
LA  - ru
ID  - INTO_2021_197_a2
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%T Stability of completely controllable systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 28-35
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/
%G ru
%F INTO_2021_197_a2
A. Ya. Narmanov. Stability of completely controllable systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/

[1] Azamov A. A., Narmanov A. Ya., “O predelnykh mnozhestvakh orbit sistem vektornykh polei”, Differ. uravn., 40:2 (2004), 257–260 | MR | Zbl

[2] Narmanov A. Ya., “O mnozhestvakh upravlyaemosti sistem upravleniya, yavlyayuschikhsya sloyami sloeniya korazmernosti odin”, Differ. uravn., 19:9 (1983), 1627–1630 | MR

[3] Narmanov A. Ya., “Teorema stabilnosti dlya nekompaktnykh sloev sloeniya korazmernosti odin”, Vestn. LGU., 1983, no. 9, 100–102 | MR | Zbl

[4] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 21:9 (1985), 1504–1508 | MR

[5] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 31:4 (1995), 597–600 | MR

[6] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl

[7] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differ. uravn., 33:10 (1997), 1334–1338 | MR | Zbl

[8] Narmanov A. Ya., “O stabilnosti vpolne upravlyaemykh sistem”, Differ. uravn., 36:10 (2000), 1336–1344 | MR | Zbl

[9] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[10] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differ. uravn., 4:4 (1968), 606–617 | Zbl

[11] Petrov N. N., “Upravlyaemye sistemy, podobnye sistemam s vypukloi vektogrammoi”, Vestn. LGU., 1974, no. 1, 63–69 | Zbl

[12] Tamura I., Topologiya sloenii, Mir, M., 1979

[13] Gauthier J. P., Bornard G., “An openness condition for the controllability of nonlinear systems”, J. Control Optim., 20:6 (1982), 708–714 | DOI

[14] Hermann R., “On the differential geometry of foliations”, Ann. Math., 72:3 (1960), 445–457 | DOI | MR | Zbl

[15] Inaba T., “On the stability of proper leaves of codimension one foliations”, J. Math. Soc. Jpn., 29:4 (1977), 771–778 | DOI | Zbl

[16] Molino P., Riemaninan Foliations, Birkhäuser, Boston–Basel, 1988

[17] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl

[18] Schweitzer P. A., “Some problems in foliation theory and related areas”, Lect. Notes Math., 652 (1978), 240–252 | DOI | Zbl

[19] Stefan P., “Accessibility and foliations with singularities”, Bull. Am. Math. Soc., 80:6 (1974), 1142–1145 | DOI | Zbl

[20] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | Zbl

[21] Sussmann H., “Some properties of vector field systems that are not altered by small perturbations”, J. Differ. Equations., 20 (1976), 292–315 | DOI | Zbl

[22] Tondeur Ph., Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | Zbl