Stability of completely controllable systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we discuss the stability of completely controllable systems defined on smooth manifolds. It is known that the controllability sets of symmetric systems generate singular foliations. In the case where the controllability sets have the same dimension, regular foliation arise. Thus, we can apply the methods of foliation theory to problems in control theory. In this paper, we present some results on the possibility of applying theorems on the stability of layers to the problem on the stability of completely controllable systems.
Keywords: control system, controllability set, completely controllable system, singular foliation.
Mots-clés : orbit
@article{INTO_2021_197_a2,
     author = {A. Ya. Narmanov},
     title = {Stability of completely controllable systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
TI  - Stability of completely controllable systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 28
EP  - 35
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/
LA  - ru
ID  - INTO_2021_197_a2
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%T Stability of completely controllable systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 28-35
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/
%G ru
%F INTO_2021_197_a2
A. Ya. Narmanov. Stability of completely controllable systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/