Stability of completely controllable systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we discuss the stability of completely controllable systems defined on smooth manifolds. It is known that the controllability sets of symmetric systems generate singular foliations. In the case where the controllability sets have the same dimension, regular foliation arise. Thus, we can apply the methods of foliation theory to problems in control theory. In this paper, we present some results on the possibility of applying theorems on the stability of layers to the problem on the stability of completely controllable systems.
Keywords:
control system, controllability set, completely controllable system, singular foliation.
Mots-clés : orbit
Mots-clés : orbit
@article{INTO_2021_197_a2,
author = {A. Ya. Narmanov},
title = {Stability of completely controllable systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {28--35},
publisher = {mathdoc},
volume = {197},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/}
}
TY - JOUR AU - A. Ya. Narmanov TI - Stability of completely controllable systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 28 EP - 35 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/ LA - ru ID - INTO_2021_197_a2 ER -
A. Ya. Narmanov. Stability of completely controllable systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_197_a2/