Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_197_a11, author = {A. N. Zoyidov}, title = {Properties of {Riemannian} submersions on manifolds of nonnegative curvature}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {101--107}, publisher = {mathdoc}, volume = {197}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/} }
TY - JOUR AU - A. N. Zoyidov TI - Properties of Riemannian submersions on manifolds of nonnegative curvature JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 101 EP - 107 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/ LA - ru ID - INTO_2021_197_a11 ER -
%0 Journal Article %A A. N. Zoyidov %T Properties of Riemannian submersions on manifolds of nonnegative curvature %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 101-107 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/ %G ru %F INTO_2021_197_a11
A. N. Zoyidov. Properties of Riemannian submersions on manifolds of nonnegative curvature. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 101-107. http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/
[1] Abdishukurova G. M., Narmanov A. Ya.,, “O geometrii rimanovykh submersii”, Uzbek. mat. zh., 2 (2016), 3–8 | MR
[2] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2 (2011), 5–7
[3] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994
[4] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971
[5] Zoiidov A. N., “O geometrii rimanovykh submersii nad ploskimi mnogoobraziyami”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 194–195
[6] Narmanov A. Ya., Norzhigitov Sh., “O geometrii mnogoobrazii neotritsatelnoi krivizny”, Uzbek. mat. zh., 3 (2014), 83–88 | MR
[7] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl
[8] Tamura I., Topologiya sloenii., Mir, M., 1979
[9] Hermann R., “A sufficient condition that a mapping of Riemannian manifolds to be a fiber bundle”, Proc. Am. Math. Soc., 11 (1960), 236–242 | DOI | Zbl
[10] O'Neil B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | MR
[11] Reinhart B. L., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl
[12] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 694–713
[13] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | Zbl