Properties of Riemannian submersions on manifolds of nonnegative curvature
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, submersions on manifolds of nonnegative curvature are constructed and properties of these submersions are examined. We prove that if a Riemannian submersion is defined over a flat manifold, then the manifold is isometric to the Euclidean space.
Mots-clés : submersion
Keywords: manifold, curvature.
@article{INTO_2021_197_a11,
     author = {A. N. Zoyidov},
     title = {Properties of {Riemannian} submersions on manifolds of nonnegative curvature},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/}
}
TY  - JOUR
AU  - A. N. Zoyidov
TI  - Properties of Riemannian submersions on manifolds of nonnegative curvature
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 101
EP  - 107
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/
LA  - ru
ID  - INTO_2021_197_a11
ER  - 
%0 Journal Article
%A A. N. Zoyidov
%T Properties of Riemannian submersions on manifolds of nonnegative curvature
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 101-107
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/
%G ru
%F INTO_2021_197_a11
A. N. Zoyidov. Properties of Riemannian submersions on manifolds of nonnegative curvature. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 101-107. http://geodesic.mathdoc.fr/item/INTO_2021_197_a11/

[1] Abdishukurova G. M., Narmanov A. Ya.,, “O geometrii rimanovykh submersii”, Uzbek. mat. zh., 2 (2016), 3–8 | MR

[2] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2 (2011), 5–7

[3] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994

[4] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[5] Zoiidov A. N., “O geometrii rimanovykh submersii nad ploskimi mnogoobraziyami”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 194–195

[6] Narmanov A. Ya., Norzhigitov Sh., “O geometrii mnogoobrazii neotritsatelnoi krivizny”, Uzbek. mat. zh., 3 (2014), 83–88 | MR

[7] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[8] Tamura I., Topologiya sloenii., Mir, M., 1979

[9] Hermann R., “A sufficient condition that a mapping of Riemannian manifolds to be a fiber bundle”, Proc. Am. Math. Soc., 11 (1960), 236–242 | DOI | Zbl

[10] O'Neil B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | MR

[11] Reinhart B. L., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl

[12] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 694–713

[13] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | Zbl