Weak continuity of skew-Hermitian operators in Banach ideals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{H}$ be a separable complex Hilbert space, $\mathcal{B(H)}$ be the $C^{*}$-algebra of all bounded linear operators acting in $\mathcal{H}$, $\mathcal{I}$ be the perfect Banach ideal of compact operators in $\mathcal{B(H)}$, and $\mathcal{I}^h=\{{x\in\mathcal{I}}, \ {x=x^*}\}$. We prove that any skew-Hermitian operator $T:\mathcal{I}^h\to\mathcal{I}^h$ is continuous in the weak topology $\sigma(\mathcal{I},\mathcal{I}^{\times})$, where $\mathcal{I}^{\times}=\{x\in\mathcal{B(H)} \mid xy \in \mathcal{C}_1 \ \forall y \in \mathcal{I}\}$ is the associated Banach ideal for $\mathcal{I}$.
Keywords: Banach ideal of compact operators, weak topology, skew-Hermitian operator.
@article{INTO_2021_197_a0,
     author = {B. R. Aminov and V. I. Chilin},
     title = {Weak continuity of {skew-Hermitian} operators in {Banach} ideals},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a0/}
}
TY  - JOUR
AU  - B. R. Aminov
AU  - V. I. Chilin
TI  - Weak continuity of skew-Hermitian operators in Banach ideals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 11
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a0/
LA  - ru
ID  - INTO_2021_197_a0
ER  - 
%0 Journal Article
%A B. R. Aminov
%A V. I. Chilin
%T Weak continuity of skew-Hermitian operators in Banach ideals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-11
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a0/
%G ru
%F INTO_2021_197_a0
B. R. Aminov; V. I. Chilin. Weak continuity of skew-Hermitian operators in Banach ideals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 3-11. http://geodesic.mathdoc.fr/item/INTO_2021_197_a0/

[1] Aminov B. R., Chilin V. I., “Izometrii i ermitovy operatory v kompleksnykh simmetrichnykh prostranstvakh posledovatelnostei”, Mat. tr., 20:1 (2017), 21–42 | Zbl

[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[3] Zaidenberg M. G., “K izometricheskoi klassifikatsii simmetrichnykh prostranstv”, Dokl. AN SSSR., 234:2 (1977), 283–286 | MR | Zbl

[4] Kelli D. L., Obschaya topologiya, Nauka, M., 1968

[5] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978

[6] Aminov B. R., Chilin V. I., “Isometries of perfect norm ideals of compact operators”, Stud. Math., 241:1 (2018), 87–99 | DOI | Zbl

[7] Aminov B. R., Chilin V. I., “Isometries of real subspaces of self-adjoint operators in banach symmetric ideals”, Vladikavkaz. mat. zh., 21:4 (2019), 11–24 | MR | Zbl

[8] Ando N., “On fundamental properties of a Banach space with a cone”, Pac. J. Math., 12:4 (1962), 1163–1169 | DOI | Zbl

[9] Arazy J., “Isometries on complex symmetric sequence spaces”, Math. Z., 188 (1985), 427–431 | DOI | MR

[10] Dodds P. G., Lennard C. J., “Normality in trace ideals, I”, Operator Theory., 16 (1986), 127–145 | MR | Zbl

[11] Garling D. J. H., “On ideals of operators in Hilbert space”, Proc. London Math. Soc., 17 (1967), 115–138 | DOI | MR | Zbl

[12] Godefroy G., Kalton N. J., “The ball topology and its applications”, Contemp. Math., 85 (1989), 195–237 | DOI | Zbl

[13] Lumer G., “On the isometries of reflexive Orlicz spaces”, Ann. Inst. Fourier., 13 (1963), 99–109 | DOI | Zbl

[14] Rosenthal H., “The Lie algebra of a Banach space”, Lect. Notes Math., 1166 (1985), 129–157 | DOI | Zbl

[15] Simon B., Trace Ideals and Their Applications, Am. Math. Soc., Providence, Rhode Island, 2005 | Zbl

[16] Sourour A., “Isometries of norm ideals of compact operators”, J. Funct. Anal., 43 (1981), 69–77 | DOI | Zbl

[17] Stratila S., Zsido L., Lectures on von Neumann Algebras, Editura Academiei, Bucharest, 1979 | Zbl

[18] Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Univ. Press, 1991 | Zbl

[19] Zaidenberg M. G., “A representation of isometries of function spaces”, Mat. fiz. anal. geom., 4:3 (1997), 339–347 | MR | Zbl