Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_196_a7, author = {P. S. Petrenko}, title = {On the solvability of a degenerate hybrid system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {90--97}, publisher = {mathdoc}, volume = {196}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/} }
TY - JOUR AU - P. S. Petrenko TI - On the solvability of a degenerate hybrid system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 90 EP - 97 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/ LA - ru ID - INTO_2021_196_a7 ER -
P. S. Petrenko. On the solvability of a degenerate hybrid system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 90-97. http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/
[1] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999
[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR
[3] Scheglova A. A., “Nablyudaemost vyrozhdennykh lineinykh gibridnykh sistem s postoyannymi koeffitsientami”, Avtomat. telemekh., 2004, no. 11, 86–101
[4] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomat. telemekh., 2008, no. 10, 57–80
[5] Scheglova A. A., “Dvoistvennost ponyatii upravlyaemosti i nablyudaemosti dlya vyrozhdennykh lineinykh gibridnykh sistem”, Avtomat. telemekh., 2006, no. 9, 99–119
[6] Barton P. I., Lee C. K., “Modeling, simulation, sensitivity analysis and optimization of hybrid systems”, ACM Trans. Model. Comput. Simul., 12:4 (2002), 256–289 | DOI | Zbl
[7] Bemborad A., Ferrari-Trecate G., Morari M., “Observability and controllability of piecewise affine and hybrid systems”, IEEE Trans. Automat. Control., 45:10 (2000), 1864–1876 | DOI | MR
[8] Blondel V. D., Tsitsiklis J. N., “Complexity of stability and controllability of elementary hybrid systems”, Automatica., 35:3 (1999), 479–489 | DOI | MR | Zbl
[9] Bullo F., Zefran M., “Modeling and controllability for a class of hybrid mechanical systems”, IEEE Trans. Robot. Automat., 18:4 (2002), 563–573 | DOI
[10] Dai L., Singular Control Systems, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[11] Ezzine J., Haddad A. H., “Controllability and observability of hybrid systems”, Int. J. Control., 49:6 (1989), 2045–2055 | DOI | MR | Zbl
[12] Kunkel P., Mehrmann W. L., Differential-algebraic equations: analysis and numerical solutions, Eur. Math. Soc., Zurich, 2006 | MR
[13] Lemch E. S., Sastry S., Caines P. E., “On the global controllability of hybrid systems: Hybrifolds and fountains”, Proc. 39th IEEE Conf. on Decision and Control (December 12–15, 2000, Sydney, Australia), 2000, 981–986 | MR
[14] Lewis A. D., Murray R. M., “Configuration controllability of simple mechanical control systems”, SIAM J. Control. Optim., 35:3 (1997), 766–790 | DOI | MR | Zbl
[15] Marz R., “Solvability of linear differential algebraic equations with properly stated leading terms”, Res. Math., 45 (2004), 88–95 | DOI | MR
[16] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik., 54:8 (2006), 405–415 | DOI
[17] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, Zh. Sib. fed. un-ta. Ser. Mat. Fiz., 10:3 (2017), 320–329 | MR | Zbl
[18] Rondepierre A., “Piecewis affine systems controllability and hybrid optimal control”, Proc. II Int. Conf. on Informatics in Control, Automation, and Robotics (Barcelona, Spain, September 14-17, 2005), Barselone, 2005, 294–302
[19] Schuppen J. H., “A sufficient condition for controllability of a class of hybrid systems”, Hybrid Systems: Computation and Control, eds. Henzinger T. A., Sastry S., Berkeley, CA, USA, 1998, 374–383 | DOI | MR
[20] Sontag E. D., “Interconnected automata and linear systems: a theoretical framework in discrete-time”, Lect. Notes Comput. Sci., v. 1066, Springer-Verlag, 1996, 436–448 | DOI
[21] Tugnait J. K., “Adaptive estimation and identification for discrete systems with Markov jump parameters”, IEEE Trans. Automat. Control., 27:5 (1982), 1054–1065 | DOI | MR | Zbl
[22] Vidal R., Chiuso A., So atto St., Sastry Sh., “Observability of linear hybrid systems”, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 2003, 526–539 | DOI | Zbl