On the solvability of a degenerate hybrid system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 90-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete linear-continuous system with constant coefficients, which is not resolved with respect to the derivative of the continuous component of the unknown function. The analysis is essentially based on the methodology for studying degenerate systems of ordinary differential equations. We construct an equivalent structural form, introduce the concept of consistent initial data, and prove necessary and sufficient conditions for the solvability of the initial problem for the system considered.
Keywords: hybrid system, differential-algebraic equation, solvability
Mots-clés : consistent data.
@article{INTO_2021_196_a7,
     author = {P. S. Petrenko},
     title = {On the solvability of a degenerate hybrid system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {90--97},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/}
}
TY  - JOUR
AU  - P. S. Petrenko
TI  - On the solvability of a degenerate hybrid system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 90
EP  - 97
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/
LA  - ru
ID  - INTO_2021_196_a7
ER  - 
%0 Journal Article
%A P. S. Petrenko
%T On the solvability of a degenerate hybrid system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 90-97
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/
%G ru
%F INTO_2021_196_a7
P. S. Petrenko. On the solvability of a degenerate hybrid system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 90-97. http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/

[1] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[3] Scheglova A. A., “Nablyudaemost vyrozhdennykh lineinykh gibridnykh sistem s postoyannymi koeffitsientami”, Avtomat. telemekh., 2004, no. 11, 86–101

[4] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomat. telemekh., 2008, no. 10, 57–80

[5] Scheglova A. A., “Dvoistvennost ponyatii upravlyaemosti i nablyudaemosti dlya vyrozhdennykh lineinykh gibridnykh sistem”, Avtomat. telemekh., 2006, no. 9, 99–119

[6] Barton P. I., Lee C. K., “Modeling, simulation, sensitivity analysis and optimization of hybrid systems”, ACM Trans. Model. Comput. Simul., 12:4 (2002), 256–289 | DOI | Zbl

[7] Bemborad A., Ferrari-Trecate G., Morari M., “Observability and controllability of piecewise affine and hybrid systems”, IEEE Trans. Automat. Control., 45:10 (2000), 1864–1876 | DOI | MR

[8] Blondel V. D., Tsitsiklis J. N., “Complexity of stability and controllability of elementary hybrid systems”, Automatica., 35:3 (1999), 479–489 | DOI | MR | Zbl

[9] Bullo F., Zefran M., “Modeling and controllability for a class of hybrid mechanical systems”, IEEE Trans. Robot. Automat., 18:4 (2002), 563–573 | DOI

[10] Dai L., Singular Control Systems, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[11] Ezzine J., Haddad A. H., “Controllability and observability of hybrid systems”, Int. J. Control., 49:6 (1989), 2045–2055 | DOI | MR | Zbl

[12] Kunkel P., Mehrmann W. L., Differential-algebraic equations: analysis and numerical solutions, Eur. Math. Soc., Zurich, 2006 | MR

[13] Lemch E. S., Sastry S., Caines P. E., “On the global controllability of hybrid systems: Hybrifolds and fountains”, Proc. 39th IEEE Conf. on Decision and Control (December 12–15, 2000, Sydney, Australia), 2000, 981–986 | MR

[14] Lewis A. D., Murray R. M., “Configuration controllability of simple mechanical control systems”, SIAM J. Control. Optim., 35:3 (1997), 766–790 | DOI | MR | Zbl

[15] Marz R., “Solvability of linear differential algebraic equations with properly stated leading terms”, Res. Math., 45 (2004), 88–95 | DOI | MR

[16] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik., 54:8 (2006), 405–415 | DOI

[17] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, Zh. Sib. fed. un-ta. Ser. Mat. Fiz., 10:3 (2017), 320–329 | MR | Zbl

[18] Rondepierre A., “Piecewis affine systems controllability and hybrid optimal control”, Proc. II Int. Conf. on Informatics in Control, Automation, and Robotics (Barcelona, Spain, September 14-17, 2005), Barselone, 2005, 294–302

[19] Schuppen J. H., “A sufficient condition for controllability of a class of hybrid systems”, Hybrid Systems: Computation and Control, eds. Henzinger T. A., Sastry S., Berkeley, CA, USA, 1998, 374–383 | DOI | MR

[20] Sontag E. D., “Interconnected automata and linear systems: a theoretical framework in discrete-time”, Lect. Notes Comput. Sci., v. 1066, Springer-Verlag, 1996, 436–448 | DOI

[21] Tugnait J. K., “Adaptive estimation and identification for discrete systems with Markov jump parameters”, IEEE Trans. Automat. Control., 27:5 (1982), 1054–1065 | DOI | MR | Zbl

[22] Vidal R., Chiuso A., So atto St., Sastry Sh., “Observability of linear hybrid systems”, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 2003, 526–539 | DOI | Zbl