On the solvability of a degenerate hybrid system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 90-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete linear-continuous system with constant coefficients, which is not resolved with respect to the derivative of the continuous component of the unknown function. The analysis is essentially based on the methodology for studying degenerate systems of ordinary differential equations. We construct an equivalent structural form, introduce the concept of consistent initial data, and prove necessary and sufficient conditions for the solvability of the initial problem for the system considered.
Keywords: hybrid system, differential-algebraic equation, solvability
Mots-clés : consistent data.
@article{INTO_2021_196_a7,
     author = {P. S. Petrenko},
     title = {On the solvability of a degenerate hybrid system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {90--97},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/}
}
TY  - JOUR
AU  - P. S. Petrenko
TI  - On the solvability of a degenerate hybrid system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 90
EP  - 97
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/
LA  - ru
ID  - INTO_2021_196_a7
ER  - 
%0 Journal Article
%A P. S. Petrenko
%T On the solvability of a degenerate hybrid system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 90-97
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/
%G ru
%F INTO_2021_196_a7
P. S. Petrenko. On the solvability of a degenerate hybrid system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 90-97. http://geodesic.mathdoc.fr/item/INTO_2021_196_a7/