On the stability of coupled nonlinear oscillators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of Yu. N. Bibikov on the stability of equilibrium positions of two coupled nonlinear oscillators under the action of conservative perturbing forces. We obtain stability and instability conditions for the case of sufficiently small perturbing forces. Also, we consider the problem of stabilizing an equilibrium position by potential forces when only the relative position of the oscillators is measured and propose the form of a stabilizing potential.
Keywords: nonlinear oscillator, Hamiltonian system with two degrees of freedom, stability, stabilization under incomplete measurement.
@article{INTO_2021_196_a4,
     author = {A. A. Kosov},
     title = {On the stability of coupled nonlinear oscillators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
TI  - On the stability of coupled nonlinear oscillators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 44
EP  - 49
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/
LA  - ru
ID  - INTO_2021_196_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%T On the stability of coupled nonlinear oscillators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 44-49
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/
%G ru
%F INTO_2021_196_a4
A. A. Kosov. On the stability of coupled nonlinear oscillators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/

[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[4] Bibikov Yu. N., “Ob ustoichivosti v gamiltonovykh sistemakh s dvumya stepenyami svobody”, Mat. zametki., 95:2 (2014), 202–208 | Zbl

[5] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. Mosk. mat. o-va., 26 (1972), 199–239 | Zbl

[6] Bryuno A.D., “Ob ustoichivosti v sisteme Gamiltona”, Mat. zametki., 40:3 (1986), 385–392 | MR | Zbl

[7] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Mashinostroenie, L., 1974

[8] Kozlov V. V., “O neustoichivosti ravnovesiya v potentsialnom pole”, Usp. mat. nauk., 36:3 (1981), 215–216 | MR | Zbl

[9] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, Prikl. mat. mekh., 41:1 (1977), 24–33 | MR

[10] Moser J. K., Lectures on Hamiltonian systems, Am. Math. Soc., Providence, Rhode Island, 1968 | Zbl