Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_196_a4, author = {A. A. Kosov}, title = {On the stability of coupled nonlinear oscillators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {44--49}, publisher = {mathdoc}, volume = {196}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/} }
TY - JOUR AU - A. A. Kosov TI - On the stability of coupled nonlinear oscillators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 44 EP - 49 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/ LA - ru ID - INTO_2021_196_a4 ER -
A. A. Kosov. On the stability of coupled nonlinear oscillators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2021_196_a4/
[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974
[4] Bibikov Yu. N., “Ob ustoichivosti v gamiltonovykh sistemakh s dvumya stepenyami svobody”, Mat. zametki., 95:2 (2014), 202–208 | Zbl
[5] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. Mosk. mat. o-va., 26 (1972), 199–239 | Zbl
[6] Bryuno A.D., “Ob ustoichivosti v sisteme Gamiltona”, Mat. zametki., 40:3 (1986), 385–392 | MR | Zbl
[7] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Mashinostroenie, L., 1974
[8] Kozlov V. V., “O neustoichivosti ravnovesiya v potentsialnom pole”, Usp. mat. nauk., 36:3 (1981), 215–216 | MR | Zbl
[9] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, Prikl. mat. mekh., 41:1 (1977), 24–33 | MR
[10] Moser J. K., Lectures on Hamiltonian systems, Am. Math. Soc., Providence, Rhode Island, 1968 | Zbl