On solutions of the traveling wave type for the nonlinear heat equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 36-43
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the problem of finding solutions to a nonlinear heat equation with a power-law nonlinearity, which have the form of a traveling wave and simulate the propagation of disturbances along a cold background with a finite speed. We show that the construction can be reduced to the Cauchy problem for a second-order ordinary differential equation with a singular coefficient of the highest derivative. For this Cauchy problem, the theorem on the existence and uniqueness of a smooth solution is proved. We develop an algorithm for constructing an approximate solution based on the boundary-element method and also present the results of computational experiments with numerical estimates of the parameters of the solution.
Keywords:
nonlinear heat equation, existence theorem, uniqueness theorem, series, boundary-element method.
Mots-clés : exact solution, convergence
Mots-clés : exact solution, convergence
@article{INTO_2021_196_a3,
author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
title = {On solutions of the traveling wave type for the nonlinear heat equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {36--43},
publisher = {mathdoc},
volume = {196},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/}
}
TY - JOUR AU - A. L. Kazakov AU - P. A. Kuznetsov AU - L. F. Spevak TI - On solutions of the traveling wave type for the nonlinear heat equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 36 EP - 43 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/ LA - ru ID - INTO_2021_196_a3 ER -
%0 Journal Article %A A. L. Kazakov %A P. A. Kuznetsov %A L. F. Spevak %T On solutions of the traveling wave type for the nonlinear heat equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 36-43 %V 196 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/ %G ru %F INTO_2021_196_a3
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On solutions of the traveling wave type for the nonlinear heat equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 36-43. http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/