On solutions of the traveling wave type for the nonlinear heat equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 36-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of finding solutions to a nonlinear heat equation with a power-law nonlinearity, which have the form of a traveling wave and simulate the propagation of disturbances along a cold background with a finite speed. We show that the construction can be reduced to the Cauchy problem for a second-order ordinary differential equation with a singular coefficient of the highest derivative. For this Cauchy problem, the theorem on the existence and uniqueness of a smooth solution is proved. We develop an algorithm for constructing an approximate solution based on the boundary-element method and also present the results of computational experiments with numerical estimates of the parameters of the solution.
Keywords: nonlinear heat equation, existence theorem, uniqueness theorem, series, boundary-element method.
Mots-clés : exact solution, convergence
@article{INTO_2021_196_a3,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {On solutions of the traveling wave type for the nonlinear heat equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {36--43},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - On solutions of the traveling wave type for the nonlinear heat equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 36
EP  - 43
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/
LA  - ru
ID  - INTO_2021_196_a3
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T On solutions of the traveling wave type for the nonlinear heat equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 36-43
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/
%G ru
%F INTO_2021_196_a3
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On solutions of the traveling wave type for the nonlinear heat equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 36-43. http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/

[1] Barenblatt G. I., Entov V. M., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[2] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi: Tochnye resheniya, M., 1996

[3] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[4] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | Zbl

[5] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. in-ta mat. mekh. UrO RAN., 20:1 (2014), 119–129 | MR

[6] Kazakov A. L., Nefedova O. A., Spevak L. F., “Reshenie zadach ob initsiirovanii teplovoi volny dlya nelineinogo uravneniya teploprovodnosti metodom granichnykh elementov”, Zh. vychisl. mat. mat. fiz., 59:6 (2019), 1047–1062 | Zbl

[7] Kazakov A. L., Orlov Sv. S., Orlov S. S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zh., 59:3 (2018), 544–560 | MR | Zbl

[8] Kurant R., Gilbert D., Metody matematicheskoi fiziki. T. 2, GITTL, M.-L., 1945 | MR

[9] Samarskii A. A., Galaktionov V. A., Kurdyumov V. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, YNauka, M., 1987 | MR

[10] Banerjee P. K., Butterfeld R., Boundary Element Methods in Engineering Science, McGraw-Hill, London, 1981 | MR | Zbl

[11] Filimonov M. Yu., “Application of method of special series for solution of nonlinear partial differential equations”, AIP Conf. Proc., 1631:40 (2014), 218–223 | DOI

[12] Filimonov M. Yu., Korzunin L. G., Sidorov A. F., “Approximate methods for solving nonlinear initial-boundary-value problems based on special construction of series”, Russ. J. Numer. Anal. Math. Model., 8:2 (1993), 101–125 | DOI | MR | Zbl

[13] Kazakov A. L., Kuznetsov P. A., “On the analytic solutions of a special boundary-value problem for a nonlinear heat equation in polar coordinates”, J. Appl. Industr. Math., 12:2 (2018), 255–263 | DOI | MR | Zbl

[14] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, J. Math. Sci., 239:2 (2019), 111–122 | DOI | MR | Zbl

[15] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Model., 37:10-11 (2013), 6918–6928 | DOI | MR | Zbl

[16] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Model., 40:2 (2016), 1333–1343 | DOI | MR | Zbl

[17] Nardini D., Brebbia C. A., “A new approach to free vibration analysis using boundary elements”, Appl. Math. Model., 7:3 (1983), 157–162 | DOI | MR | Zbl

[18] Sidorov A. F., “Application of characteristic series to the solution of three-dimensional problems in gas dynamics”, Numerical Methods in Fluid Dynamics, Mir, M., 1984, 184–205 | MR

[19] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR