Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_196_a3, author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak}, title = {On solutions of the traveling wave type for the nonlinear heat equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {36--43}, publisher = {mathdoc}, volume = {196}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/} }
TY - JOUR AU - A. L. Kazakov AU - P. A. Kuznetsov AU - L. F. Spevak TI - On solutions of the traveling wave type for the nonlinear heat equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 36 EP - 43 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/ LA - ru ID - INTO_2021_196_a3 ER -
%0 Journal Article %A A. L. Kazakov %A P. A. Kuznetsov %A L. F. Spevak %T On solutions of the traveling wave type for the nonlinear heat equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 36-43 %V 196 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/ %G ru %F INTO_2021_196_a3
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On solutions of the traveling wave type for the nonlinear heat equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 36-43. http://geodesic.mathdoc.fr/item/INTO_2021_196_a3/
[1] Barenblatt G. I., Entov V. M., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984
[2] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi: Tochnye resheniya, M., 1996
[3] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966
[4] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | Zbl
[5] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. in-ta mat. mekh. UrO RAN., 20:1 (2014), 119–129 | MR
[6] Kazakov A. L., Nefedova O. A., Spevak L. F., “Reshenie zadach ob initsiirovanii teplovoi volny dlya nelineinogo uravneniya teploprovodnosti metodom granichnykh elementov”, Zh. vychisl. mat. mat. fiz., 59:6 (2019), 1047–1062 | Zbl
[7] Kazakov A. L., Orlov Sv. S., Orlov S. S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zh., 59:3 (2018), 544–560 | MR | Zbl
[8] Kurant R., Gilbert D., Metody matematicheskoi fiziki. T. 2, GITTL, M.-L., 1945 | MR
[9] Samarskii A. A., Galaktionov V. A., Kurdyumov V. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, YNauka, M., 1987 | MR
[10] Banerjee P. K., Butterfeld R., Boundary Element Methods in Engineering Science, McGraw-Hill, London, 1981 | MR | Zbl
[11] Filimonov M. Yu., “Application of method of special series for solution of nonlinear partial differential equations”, AIP Conf. Proc., 1631:40 (2014), 218–223 | DOI
[12] Filimonov M. Yu., Korzunin L. G., Sidorov A. F., “Approximate methods for solving nonlinear initial-boundary-value problems based on special construction of series”, Russ. J. Numer. Anal. Math. Model., 8:2 (1993), 101–125 | DOI | MR | Zbl
[13] Kazakov A. L., Kuznetsov P. A., “On the analytic solutions of a special boundary-value problem for a nonlinear heat equation in polar coordinates”, J. Appl. Industr. Math., 12:2 (2018), 255–263 | DOI | MR | Zbl
[14] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, J. Math. Sci., 239:2 (2019), 111–122 | DOI | MR | Zbl
[15] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Model., 37:10-11 (2013), 6918–6928 | DOI | MR | Zbl
[16] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Model., 40:2 (2016), 1333–1343 | DOI | MR | Zbl
[17] Nardini D., Brebbia C. A., “A new approach to free vibration analysis using boundary elements”, Appl. Math. Model., 7:3 (1983), 157–162 | DOI | MR | Zbl
[18] Sidorov A. F., “Application of characteristic series to the solution of three-dimensional problems in gas dynamics”, Numerical Methods in Fluid Dynamics, Mir, M., 1984, 184–205 | MR
[19] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR