Chebyshev approximations do not need the Haar condition
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing a Chebyshev projection of the coordinate origin onto a linear manifold. In particular, the Chebyshev linear approximation problem can be formulated in this form. We present an algorithm for determining Chebyshev projections, which is not based on the Haar condition. The algorithm consists of finding relatively interior points of optimal solutions of a finite sequence of linear programming problems.
Keywords: Chebyshev projection, Hölder projection, linear approximation.
Mots-clés : Haar condition, optimal solution
@article{INTO_2021_196_a2,
     author = {V. I. Zorkal'tsev},
     title = {Chebyshev approximations do not need the {Haar} condition},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
TI  - Chebyshev approximations do not need the Haar condition
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 28
EP  - 35
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/
LA  - ru
ID  - INTO_2021_196_a2
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%T Chebyshev approximations do not need the Haar condition
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 28-35
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/
%G ru
%F INTO_2021_196_a2
V. I. Zorkal'tsev. Chebyshev approximations do not need the Haar condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/

[1] Aganbegyan A. G., Granberg A. G., Ekonomiko-matematicheskii analiz mezhotraslevogo balansa SSSR, Mysl, M., 1968

[2] Vatolin A. A., “Ob approksimatsii nesovmestnykh sistem lineinykh uravnenii i neravenstv”, Metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Sverdlovsk, 1984, 20–25

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[4] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR

[5] Eremin I. I., Teoriya lineinoi optimizatsii, Ekaterinburg, 1999

[6] Zorkaltsev V. I., Batoeva I. V., Bedenkov A. R., Sadov S. L., Soglasovanie chastnykh prognozov v balansovykh modelyakh, Syktyvkar, 1990

[7] Zorkaltsev V. I., Problemy agregirovaniya v ekonomike: est li logicheskaya sovmestimost mikroekonomiki i makroekonomiki?, Irkutsk, 1997

[8] Zorkaltsev V. I., Chernikova L. I., Renta, nalogi i struktura tsen, Irkutsk, 1991

[9] Zorkaltsev V. I., Metod naimenshikh kvadratov i ego konkurenty, Irkutsk, 1993

[10] Zorkaltsev V. I., Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995 | MR

[11] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat tochki lineinogo mnogoobraziya”, Zh. vychisl. mat. mat. fiz., 35:5 (1995), 801–810 | MR | Zbl

[12] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat resheniya sistemy lineinykh neravenstv”, Izv. Irkutsk. un-ta. Ser. Mat., 4:2 (2011), 102–103

[13] Zorkaltsev V. I., “Oktaedricheskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, Tr. In-ta mat. mekh. UrO RAN., 18:3 (2011), 106–118

[14] Zorkaltsev V. I., “Proektsii tochki na poliedr”, Zh. vychisl. mat. mat. fiz., 53:1 (2013), 4–19 | Zbl

[15] Zorkaltsev V. I., Kiseleva M. A., Sistemy lineinykh neravenstv, Irkutsk, 2007

[16] Kollatts A., Krabe V., Teoriya priblizhenii. Chebyshevskie priblizheniya, Nauka, M., 1978

[17] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR

[18] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[19] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[20] Cherkassovskii B. V., “Zadachi balansirovki matrits”, Metody matematicheskogo programmirovaniya i programmnoe obespechenie, UrO AN, Sverdlovsk, 1984, 216–217

[21] Haare A., “Die Minkowskische Geometrie und die Annaherung an stetige Funktionen”, Math. Ann., 78:1–4 (1917), 294–311 | DOI | MR