Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_196_a2, author = {V. I. Zorkal'tsev}, title = {Chebyshev approximations do not need the {Haar} condition}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {28--35}, publisher = {mathdoc}, volume = {196}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/} }
TY - JOUR AU - V. I. Zorkal'tsev TI - Chebyshev approximations do not need the Haar condition JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 28 EP - 35 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/ LA - ru ID - INTO_2021_196_a2 ER -
V. I. Zorkal'tsev. Chebyshev approximations do not need the Haar condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/
[1] Aganbegyan A. G., Granberg A. G., Ekonomiko-matematicheskii analiz mezhotraslevogo balansa SSSR, Mysl, M., 1968
[2] Vatolin A. A., “Ob approksimatsii nesovmestnykh sistem lineinykh uravnenii i neravenstv”, Metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Sverdlovsk, 1984, 20–25
[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR
[4] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR
[5] Eremin I. I., Teoriya lineinoi optimizatsii, Ekaterinburg, 1999
[6] Zorkaltsev V. I., Batoeva I. V., Bedenkov A. R., Sadov S. L., Soglasovanie chastnykh prognozov v balansovykh modelyakh, Syktyvkar, 1990
[7] Zorkaltsev V. I., Problemy agregirovaniya v ekonomike: est li logicheskaya sovmestimost mikroekonomiki i makroekonomiki?, Irkutsk, 1997
[8] Zorkaltsev V. I., Chernikova L. I., Renta, nalogi i struktura tsen, Irkutsk, 1991
[9] Zorkaltsev V. I., Metod naimenshikh kvadratov i ego konkurenty, Irkutsk, 1993
[10] Zorkaltsev V. I., Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995 | MR
[11] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat tochki lineinogo mnogoobraziya”, Zh. vychisl. mat. mat. fiz., 35:5 (1995), 801–810 | MR | Zbl
[12] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat resheniya sistemy lineinykh neravenstv”, Izv. Irkutsk. un-ta. Ser. Mat., 4:2 (2011), 102–103
[13] Zorkaltsev V. I., “Oktaedricheskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, Tr. In-ta mat. mekh. UrO RAN., 18:3 (2011), 106–118
[14] Zorkaltsev V. I., “Proektsii tochki na poliedr”, Zh. vychisl. mat. mat. fiz., 53:1 (2013), 4–19 | Zbl
[15] Zorkaltsev V. I., Kiseleva M. A., Sistemy lineinykh neravenstv, Irkutsk, 2007
[16] Kollatts A., Krabe V., Teoriya priblizhenii. Chebyshevskie priblizheniya, Nauka, M., 1978
[17] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR
[18] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR
[19] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989
[20] Cherkassovskii B. V., “Zadachi balansirovki matrits”, Metody matematicheskogo programmirovaniya i programmnoe obespechenie, UrO AN, Sverdlovsk, 1984, 216–217
[21] Haare A., “Die Minkowskische Geometrie und die Annaherung an stetige Funktionen”, Math. Ann., 78:1–4 (1917), 294–311 | DOI | MR