Chebyshev approximations do not need the Haar condition
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 28-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing a Chebyshev projection of the coordinate origin onto a linear manifold. In particular, the Chebyshev linear approximation problem can be formulated in this form. We present an algorithm for determining Chebyshev projections, which is not based on the Haar condition. The algorithm consists of finding relatively interior points of optimal solutions of a finite sequence of linear programming problems.
Keywords: Chebyshev projection, Hölder projection, linear approximation.
Mots-clés : Haar condition, optimal solution
@article{INTO_2021_196_a2,
     author = {V. I. Zorkal'tsev},
     title = {Chebyshev approximations do not need the {Haar} condition},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
TI  - Chebyshev approximations do not need the Haar condition
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 28
EP  - 35
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/
LA  - ru
ID  - INTO_2021_196_a2
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%T Chebyshev approximations do not need the Haar condition
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 28-35
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/
%G ru
%F INTO_2021_196_a2
V. I. Zorkal'tsev. Chebyshev approximations do not need the Haar condition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 28-35. http://geodesic.mathdoc.fr/item/INTO_2021_196_a2/