Elements of global search in the general d.c. optimization problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 114-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an optimization problem whose objective function and equality and inequality constraints are determined by d.c. functions. Using the method of exact penalties, we reduce the original problem to a penalized problem without constraints, which is a d.c. minimization problem. For this problem, we apply the conditions of global optimality, which possess an algorithmic (constructive) property. These conditions are generalized to the case of minimizing sequences for the original and penalized problems. We propose a method for solving the auxiliary problem based on optimality conditions. A global search scheme for solving the auxiliary and original problems is constructed and its convergence is proved.
Keywords: nonconvex optimization, d.c. function, exact penalty, linearized problem, optimality condition, global search convergence.
@article{INTO_2021_196_a10,
     author = {A. S. Strekalovskii},
     title = {Elements of global search in the general d.c. optimization problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {114--127},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a10/}
}
TY  - JOUR
AU  - A. S. Strekalovskii
TI  - Elements of global search in the general d.c. optimization problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 114
EP  - 127
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a10/
LA  - ru
ID  - INTO_2021_196_a10
ER  - 
%0 Journal Article
%A A. S. Strekalovskii
%T Elements of global search in the general d.c. optimization problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 114-127
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a10/
%G ru
%F INTO_2021_196_a10
A. S. Strekalovskii. Elements of global search in the general d.c. optimization problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 114-127. http://geodesic.mathdoc.fr/item/INTO_2021_196_a10/

[1] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[2] Gruzdeva T. V., Strekalovskii A. S., Zadachi o klike i nevypuklaya optimizatsiya, Nauka, Novosibirsk, 2014

[3] Demyanov V. F., Usloviya ekstremuma i variatsionnoe ischislenie, Vysshaya shkola, M., 2005

[4] Eremin I. I., “Metod «shtrafov» v vypuklom programmirovanii”, Dokl. AN SSSR., 173:4 (1967), 748–751 | Zbl

[5] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[6] Strekalovskii A. S., “O minimizatsii raznosti vypuklykh funktsii na dopustimom mnozhestve”, Zh. vychisl. mat. mat. fiz., 43:3 (2003), 399–409 | MR | Zbl

[7] Strekalovskii A. S., “Novye usloviya globalnoi optimalnosti v zadache s D.C. ogranicheniyami”, Tr. in-ta mat. mekh. UrO RAN., 25 (2019), 245–261 | MR

[8] Strekalovskii A. S., Orlov A. V., Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007

[9] Bonnans J.-F., Gilbert J. C., Lemaréchal C., Sagastizábal C. A., Numerical Optimization: Theoretical and Practical Aspects, Springer-Verlag, Berlin–Heidelberg, 2006 | MR | Zbl

[10] Burke J., “An exact penalization viewpoint of constrained optimization”, SIAM J. Control Optim., 29 (1991), 968–998 | DOI | MR | Zbl

[11] Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983 | MR | Zbl

[12] Di Pillo G., Lucidi S., Rinaldi F., “A derivative-free algorithm for constrained global optimization based on exact penalty functions”, J. Optim. Theory Appl., 164 (2015), 862–882 | DOI | MR | Zbl

[13] Frontiers in Global Optimization, eds. Floudas C. A., Pardalos P. M., Kluwer, Dordrecht, 2004 | MR | Zbl

[14] Hiriart-Urruty J.-B., Lemaréchal C., Convex Analysis and Minimization Algorithms, Springer-Verlag, Berlin, 1993 | MR

[15] Horst R., Tuy H., Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin, 1993 | MR

[16] Le Thi H. A., Huynh V. N., Dinh T. P., “DC Programming and DCA for General DC Programs”, Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing, v. 282, eds. van Do T., Thi H., Nguyen N., Springer, Cham, 2014, 15–35 | DOI | MR | Zbl

[17] Nocedal J., Wright S. J., Numerical Optimization, Springer, New York, 2006 | MR | Zbl

[18] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl

[19] Strekalovsky A. S., “Global optimality conditions for optimal control problems with functions of A. D. Alexandrov”, J. Optim. Theory Appl., 159 (2013), 297–321 | DOI | MR | Zbl

[20] Strekalovsky A. S., “On solving optimization problems with hidden nonconvex structures”, Optimization in Science and Engineering, eds. Rassias T. M., Floudas C. A., Butenko S., Springer, New York, 2014, 465–502 | DOI | MR | Zbl

[21] Strekalovsky A. S., “Global optimality conditions in nonconvex optimization”, J. Optim. Theory Appl., 173 (2017), 770–792 | DOI | MR | Zbl

[22] Strekalovsky A. S., “Global optimality conditions and exact penalization”, Optim. Lett., 13 (2019), 597–615 | DOI | MR | Zbl

[23] Strekalovsky A. S., Orlov A. V., Malyshev A. V., “On computational search for optimistic solutions in bilevel problems”, J. Global Optim., 48 (2010), 159–172 | DOI | MR | Zbl

[24] Strekalovsky A. S., Yanulevich M. V., “Global search in noncovex optimal control problems”, J. Global Optim., 65:1 (2016), 119–135 | DOI | MR | Zbl

[25] Tuy H., “D.c. Optimization: Theory, Methods and Algorithms”, Handbook of Global optimization, eds. Horst R., Pardalos P. M., Kluwer, Dordrecht, 1995, 149–216 | DOI | MR | Zbl

[26] Zangwill W., “Non-linear programming via penalty functions”, Management Sci., 13 (1967), 344–358 | DOI | MR | Zbl

[27] Zaslavski A. J., “Exact penalty property in optimization with mixed constraints via variational analysis”, SIAM J. Optim., 23:1 (2013), 170–187 | DOI | MR | Zbl