Improvement methods for problems of optimal control of multistage processes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 15-27
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose first- and second-order methods of improvement for optimal control problems with non-fixed durations of stages based on the theory of V. F. Krotov. We obtain unimprovability conditions, which are closely related to the necessary and sufficient conditions for a weak local minimum.
Keywords:
multistage process, dynamical system, non-fixed time, optimal control, iterative methods.
@article{INTO_2021_196_a1,
author = {V. A. Baturin and S. Cheremnykh},
title = {Improvement methods for problems of optimal control of multistage processes},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {15--27},
publisher = {mathdoc},
volume = {196},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/}
}
TY - JOUR AU - V. A. Baturin AU - S. Cheremnykh TI - Improvement methods for problems of optimal control of multistage processes JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 15 EP - 27 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/ LA - ru ID - INTO_2021_196_a1 ER -
%0 Journal Article %A V. A. Baturin %A S. Cheremnykh %T Improvement methods for problems of optimal control of multistage processes %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 15-27 %V 196 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/ %G ru %F INTO_2021_196_a1
V. A. Baturin; S. Cheremnykh. Improvement methods for problems of optimal control of multistage processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 15-27. http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/