Improvement methods for problems of optimal control of multistage processes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose first- and second-order methods of improvement for optimal control problems with non-fixed durations of stages based on the theory of V. F. Krotov. We obtain unimprovability conditions, which are closely related to the necessary and sufficient conditions for a weak local minimum.
Keywords: multistage process, dynamical system, non-fixed time, optimal control, iterative methods.
@article{INTO_2021_196_a1,
     author = {V. A. Baturin and S. Cheremnykh},
     title = {Improvement methods for problems of optimal control of multistage processes},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/}
}
TY  - JOUR
AU  - V. A. Baturin
AU  - S. Cheremnykh
TI  - Improvement methods for problems of optimal control of multistage processes
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 15
EP  - 27
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/
LA  - ru
ID  - INTO_2021_196_a1
ER  - 
%0 Journal Article
%A V. A. Baturin
%A S. Cheremnykh
%T Improvement methods for problems of optimal control of multistage processes
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 15-27
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/
%G ru
%F INTO_2021_196_a1
V. A. Baturin; S. Cheremnykh. Improvement methods for problems of optimal control of multistage processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 15-27. http://geodesic.mathdoc.fr/item/INTO_2021_196_a1/