Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_195_a8, author = {S. V. Pisareva}, title = {On {Kravchenko's} method for solving the inverse {Sturm--Liouville} problem for nonsmooth potentials}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {75--80}, publisher = {mathdoc}, volume = {195}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/} }
TY - JOUR AU - S. V. Pisareva TI - On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 75 EP - 80 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/ LA - ru ID - INTO_2021_195_a8 ER -
%0 Journal Article %A S. V. Pisareva %T On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 75-80 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/ %G ru %F INTO_2021_195_a8
S. V. Pisareva. On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 75-80. http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/
[1] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | Zbl
[2] Levitan B. M., Obratnye zadachi Shturma—Liuvillya, Nauka, M., 1984 | MR
[3] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007
[4] Andrew A. L., “Numerical solution of inverse Sturm–Liouville problems”, Anziam J., 45 (C) (2004), 326–337 | DOI | MR
[5] Andrew A. L., “Numerov's method for inverse Sturm–Liouville problems”, Inv. Probl., 21 (2005), 223–238 | DOI | MR | Zbl
[6] Andrew A. L., “Finite difference methods for half inverse Sturm–Liouville problems”, Appl. Math. Comput., 218 (2011), 445–457 | MR | Zbl
[7] Brown B. M., Samko V. S., Knowles I. W., Marletta M., “Inverse spectral problem for the Sturm–Liouville equation”, Inv. Probl., 19 (2003), 235–252 | DOI | MR | Zbl
[8] Delgado B. B., Khmelnytskaya K. V., Kravchenko V. V., “The transmutation operator method for efficient solution of the inverse Sturm–Liouville problem on a half-line”, Math. Meth. Appl. Sci., 42:18 (2019), 7359–7366 | DOI | MR | Zbl
[9] Fabiano R. H., Knobel R., Lowe B. D., “A finite-difference algorithm for a Sturm–Liouville problem”, IMA J. Num. Anal., 15 (1995), 75–88 | DOI | MR | Zbl
[10] Gou Kun, Chen Zi, “Inverse Sturm–Liouville problems and their biomedical engineering applications”, J. Sci. Med., 2:1 (2015)
[11] Hald O. H., “Sturm–Liouville problem and the Rayleigh–Ritz method”, Math. Comp., 32 (143) (1978), 687–705 | DOI | MR | Zbl
[12] Khmelnytskaya K. V., Kravchenko V. V., Torba S. M., “A representation of the transmutation kernels for the Schrödinger operator in terms of eigenfunctions and applications”, Appl. Math. Comput., 353 (2019), 274–281 | MR | Zbl
[13] Kravchenko V. V., “On a method for solving the inverse Sturm–Liouville problem”, J. Inv. Ill-Posed Probl., 27 (2019), 401–407 | DOI | MR | Zbl
[14] Kravchenko V. V., Navarro L. J., Torba S. M., “Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions”, Appl. Math. Comput., 314:1 (2017), 173–192 | MR | Zbl
[15] Lowe B. D., Pilant M., Rundell W., “The recovery of potentials from finite spectral data”, SIAM J. Math. Anal., 23:2 (1992), 482–504 | DOI | MR | Zbl
[16] Neher M., “Enclosing solutions of an inverse Sturm–Liouville problem with finite data”, Computing., 53 (1994), 379–395 | DOI | MR | Zbl
[17] Paine J., “A numerical method for the inverse Sturm–Liouville problem”, SIAM J. Sci. Stat. Comput., 5:1 (1984), 149–156 | DOI | MR | Zbl
[18] Rafler M., Böckmann C., “Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials”, Inv. Probl., 23 (2007), 933–946 | DOI | MR | Zbl
[19] Röhrl N., “A least-squares functional for solving inverse Sturm–Liouville problems”, Inv. Probl., 21 (2005), 2009–2017 | DOI | MR | Zbl
[20] Röhrl N., “Recovering boundary conditions in inverse Sturm–Liouville problems”, Contemp. Math., 412 (2006), 263–270 | DOI | MR | Zbl
[21] Rundell W., Sacks P. E., “Reconstruction techniques for classical inverse Sturm–Liouville problems”, Math. Comp., 58 (197) (1992), 161–183 | DOI | MR | Zbl
[22] Sacks P. E., “An iterative method for the inverse Dirichlet problem”, Inv. Probl., 4 (1988), 1055–1069 | DOI | MR | Zbl