On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 75-80

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method for solving the inverse Sturm–Liouville problem on a finite segment for the case of nonsmooth coefficients based on the Gelfand–Levitan equation and the representation of the kernel of the transformation operator in the series form.
Mots-clés : inverse Sturm–Liouville problem
Keywords: Gelfand–Levitan equation, kernel of the transformation operator.
@article{INTO_2021_195_a8,
     author = {S. V. Pisareva},
     title = {On {Kravchenko's} method for solving the inverse {Sturm--Liouville} problem for nonsmooth potentials},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/}
}
TY  - JOUR
AU  - S. V. Pisareva
TI  - On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 75
EP  - 80
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/
LA  - ru
ID  - INTO_2021_195_a8
ER  - 
%0 Journal Article
%A S. V. Pisareva
%T On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 75-80
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/
%G ru
%F INTO_2021_195_a8
S. V. Pisareva. On Kravchenko's method for solving the inverse Sturm--Liouville problem for nonsmooth potentials. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 75-80. http://geodesic.mathdoc.fr/item/INTO_2021_195_a8/