Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized Сahn–Hilliard equation supplemented by periodic boundary conditions. For the considered boundary-value problem, we obtain sufficient conditions for the existence of a two-dimensional local attractor formed by time-periodic solutions that are unstable in the sense of A. M. Lyapunov. The study is based on asymptotic methods and some methods of the theory of infinite-dimensional dynamical systems, such as the method of integral manifolds and the theory of normal forms.
Mots-clés : Cahn–Hilliard equation, local bifurcation
Keywords: boundary-value problem, stability.
@article{INTO_2021_195_a6,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Attractor of the generalized {Cahn--Hilliard} equation, on which all solutions are unstable},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 57
EP  - 67
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/
LA  - ru
ID  - INTO_2021_195_a6
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 57-67
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/
%G ru
%F INTO_2021_195_a6
A. N. Kulikov; D. A. Kulikov. Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 57-67. http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/

[18] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl

[19] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[20] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[21] Kudryashov N. A., Ryabov P. N., Petrov B. A., “Osobennosti formirovaniya dissipativnykh struktur, opisyvaemykh uravneniem Kuramoto—Sivashinskogo”, Model. anal. inform. sist., 22:1 (2015), 105–113 | MR

[22] Kulikov A. N., Inertsialnye mnogoobraziya nelineinykh avtokolebanii differentsialnykh uravnenii v gilbertovom prostranstve/ Preprint No 85, In-t prikl. mat. im. M.V.Keldysha, M., 1991

[23] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[24] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khillarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683 | MR | Zbl

[25] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1961), 297–350 | Zbl

[26] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys., 28 (1958), 258–267 | DOI | Zbl

[27] Devaney R. L., An Introduction to Chaotic Dynamical Systems, Westview Press, Colorado, 1989 | MR | Zbl

[28] Frolovskaya O. A., Admaev O. V., Pukhnachev V. V., “Special case of the Cahn–Hilliard equation”, Sib. elektron. mat. izv., 10 (2013), 324–334 | MR | Zbl

[29] Frolovskaya O. A., Pukhnachev V. V., “Stationary solutions of quadratic Cahn–Hilliard equation and their stability”, AIP. Conf. Proc., 1561 (2013), 47–52 | DOI

[30] Kulikov A., Kulikov D., “Bifurcation in Kuramoto–Sivashinsky equation”, Pliska Stud. Math., 25 (2015), 101–110 | MR

[31] Kulikov A. N., Kulikov D. A., “Bifurcations in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl

[32] Kulikov A. N., Kulikov D. A., “Spatially inhomogeneous solutions for a modified Kuramoto–Sivashinsky equation”, J. Math. Sci., 219:2 (2016), 173–183 | DOI | MR | Zbl

[33] Kulikov A. N., Kulikov D. A., “Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Automat. Remote Control., 78:11 (2017), 1955–1966 | DOI | MR | Zbl

[34] Lions J. L., Magenes E., Problemes aux limit es nongomogenes et applications, Dunod, Paris, 1968 | MR

[35] Marsden J. E., McCraken M., The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976 | MR | Zbl

[36] Novick-Cohen A., Segel L. A., “Nonlinear aspects of the Cahn–Hilliard equation”, Phys. D: Nonlin. Phenom., 10:3 (1984), 277–298 | DOI | MR

[37] Podolny A., Zaks M. A., Rubinstein B. Y., Golovin A. A., Nepomnyashchy A. A., “Dynamics of domain walls governed by the convective Cahn–Hilliard equation”, Phys. D: Nonlin. Phenom., 201:3 (2005), 291–305 | DOI | MR | Zbl

[38] Sivashinsky G., “Weak turbulence in periodic flows”, Phys. D: Nonlin. Phenom., 17:2 (1985), 243–255 | DOI | MR | Zbl