Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 57-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized Сahn–Hilliard equation supplemented by periodic boundary conditions. For the considered boundary-value problem, we obtain sufficient conditions for the existence of a two-dimensional local attractor formed by time-periodic solutions that are unstable in the sense of A. M. Lyapunov. The study is based on asymptotic methods and some methods of the theory of infinite-dimensional dynamical systems, such as the method of integral manifolds and the theory of normal forms.
Mots-clés : Cahn–Hilliard equation, local bifurcation
Keywords: boundary-value problem, stability.
@article{INTO_2021_195_a6,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Attractor of the generalized {Cahn--Hilliard} equation, on which all solutions are unstable},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 57
EP  - 67
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/
LA  - ru
ID  - INTO_2021_195_a6
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 57-67
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/
%G ru
%F INTO_2021_195_a6
A. N. Kulikov; D. A. Kulikov. Attractor of the generalized Cahn--Hilliard equation, on which all solutions are unstable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 57-67. http://geodesic.mathdoc.fr/item/INTO_2021_195_a6/