Goursat problem for a singular integro-functional-differential composite equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the Goursat problem for a composite equation with functional non-Carleman shifts of leading and retarded types in the singular integral operator and in the d'Alembert-type operator. We prove that the problem is uniquely solvable in the class of twice continuously differentiable solutions.
Mots-clés : composite equation, Goursat problem.
Keywords: functional shift, singular integral equation
@article{INTO_2021_195_a4,
     author = {A. N. Zarubin},
     title = {Goursat problem for a singular integro-functional-differential composite equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--50},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/}
}
TY  - JOUR
AU  - A. N. Zarubin
TI  - Goursat problem for a singular integro-functional-differential composite equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 44
EP  - 50
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/
LA  - ru
ID  - INTO_2021_195_a4
ER  - 
%0 Journal Article
%A A. N. Zarubin
%T Goursat problem for a singular integro-functional-differential composite equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 44-50
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/
%G ru
%F INTO_2021_195_a4
A. N. Zarubin. Goursat problem for a singular integro-functional-differential composite equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 44-50. http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/

[5] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[6] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, OGIZ, M., 1948 | MR

[7] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Mir, M., 1979

[8] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[9] Dzhuraev A. Dzh., Sistemy uravnenii sostavnogo tipa, Nauka, M., 1972 | MR

[10] Zarubin A. N., “Zadacha Trikomi dlya nelineinogo uravneniya smeshannogo tipa s funktsionalnym zapazdyvaniem, operezheniem i sosredotochennym otkloneniem”, Izv. vuzov. Mat., 11 (2017), 20–29 | Zbl

[11] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977

[12] Polozhii G. N., Uravneniya matematicheskoi fiziki, Vysshaya shkola, M., 1964 | MR

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR

[14] Soldatov A. P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1980