Goursat problem for a singular integro-functional-differential composite equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 44-50
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine the Goursat problem for a composite equation with functional non-Carleman shifts of leading and retarded types in the singular integral operator and in the d'Alembert-type operator. We prove that the problem is uniquely solvable in the class of twice continuously differentiable solutions.
Mots-clés :
composite equation, Goursat problem.
Keywords: functional shift, singular integral equation
Keywords: functional shift, singular integral equation
@article{INTO_2021_195_a4,
author = {A. N. Zarubin},
title = {Goursat problem for a singular integro-functional-differential composite equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {44--50},
publisher = {mathdoc},
volume = {195},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/}
}
TY - JOUR AU - A. N. Zarubin TI - Goursat problem for a singular integro-functional-differential composite equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 44 EP - 50 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/ LA - ru ID - INTO_2021_195_a4 ER -
%0 Journal Article %A A. N. Zarubin %T Goursat problem for a singular integro-functional-differential composite equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 44-50 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/ %G ru %F INTO_2021_195_a4
A. N. Zarubin. Goursat problem for a singular integro-functional-differential composite equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 44-50. http://geodesic.mathdoc.fr/item/INTO_2021_195_a4/