Gompertz function in the model of gene regulatory networks
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 88-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine a network model (including gene regulatory networks), which consists of a system of two ordinary differential equations. This system contains several parameters and depends on the regulatory matrix, which describes interactions in this two-component network. We consider attracting sets of the system, which vary depending on the parameters and elements of the regulatory matrix. Our considerations are of geometric nature, which allows us to identify and classify possible interactions in the network. The system of differential equations contains a sigmoidal function, which makes it possible to take into account peculiarities of the network's response to external influences. The Gompertz function was chosen as the sigmoidal function, which allows us to compare the results with similar results for models of two-component networks based on the logistic sigmoidal function.
Keywords: gene regulatory network, qualitative analysis, numerical analysis.
Mots-clés : phase portrait
@article{INTO_2021_195_a10,
     author = {D. A. Ogorelova and F. Zh. Sadyrbaev},
     title = {Gompertz function in the model of gene regulatory networks},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a10/}
}
TY  - JOUR
AU  - D. A. Ogorelova
AU  - F. Zh. Sadyrbaev
TI  - Gompertz function in the model of gene regulatory networks
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 88
EP  - 96
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a10/
LA  - ru
ID  - INTO_2021_195_a10
ER  - 
%0 Journal Article
%A D. A. Ogorelova
%A F. Zh. Sadyrbaev
%T Gompertz function in the model of gene regulatory networks
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 88-96
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a10/
%G ru
%F INTO_2021_195_a10
D. A. Ogorelova; F. Zh. Sadyrbaev. Gompertz function in the model of gene regulatory networks. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 88-96. http://geodesic.mathdoc.fr/item/INTO_2021_195_a10/

[1] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zh. vychisl. mat. mat. fiz., 44:12 (2004), 2276–-2295 | MR | Zbl

[2] Acary V., de Jong H., Brogliato B., “Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity system”, Phys. D: Nonlin. Phenom., 269 (2014), 103–119 | DOI | MR | Zbl

[3] Atslega S., Finaskins D., Sadyrbaev F., “On a planar dynamical system arising in the network control theory”, Math. Model. Anal., 21:3 (2016), 385–398 | DOI | MR | Zbl

[4] Brokan E., Sadyrbaev F. Zh., “On attractors in gene regulatory systems”, AIP Conf. Proc., 1809 (2017), 020010 | DOI

[5] Koizumi Y. et al., “Robust virtual network topology control based on attractor selection”, Opt. Network Design Model., 2009, 123–-128

[6] Koizumi Y. et al., “Adaptive virtual network topology control based on attractor selection”, J. Lightwave Technol., 28:11 (2010), 1720–1731 | DOI

[7] Koizumi Y. et al., “Application of attractor selection to adaptive virtual network topology control”, Bionetics, 11 (2008), 1-–8

[8] Sadyrbaev F., “Planar differential systems arising in network regulation theory”, Adv. Math. Models Appl., 4:1 (2019), 70–78

[9] Sadyrbaev F., Ogorelova D., Samuilik I., “A nullclines approach to the study of 2D artificial network”, Contemp. Math., 1:1 (2019), 1–11