Solvability of the system of integral equations of lattice models of statistical mechanics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 10-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a review of results on the solvability of a system of integral equations, which is an analog of the Kirkwood–Salzburg equations for an infinite set of partial probability distributions of Gibbs random sets on $\mathbb{Z}^d$ corresponding to lattice gas models of equilibrium statistical mechanics with a pair interaction potential $U$. We study the relationship between the solvability of the system and the location of zeros of the partition functions $Q_\Lambda(z)$ of models.
Keywords: statistical mechanics, Gibbs distribution, lattice system, Kirkwood–Salzburg equations, partition function, thermodynamic limit.
@article{INTO_2021_195_a1,
     author = {Yu. P. Virchenko},
     title = {Solvability of the system of integral equations of lattice models of statistical mechanics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--24},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
TI  - Solvability of the system of integral equations of lattice models of statistical mechanics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 10
EP  - 24
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/
LA  - ru
ID  - INTO_2021_195_a1
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%T Solvability of the system of integral equations of lattice models of statistical mechanics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 10-24
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/
%G ru
%F INTO_2021_195_a1
Yu. P. Virchenko. Solvability of the system of integral equations of lattice models of statistical mechanics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 10-24. http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/

[19] Basuev A. G., “Gamiltonian granitsy razdela faz i fazovye perekhody pervogo roda. Obobschenie teoremy Li—Yanga”, Teor. mat. fiz., 153:1 (2007), 98–123 | MR | Zbl

[20] Berezin F. A., Sinai Ya. G., “Suschestvovanie fazovogo perekhoda dlya reshetchatogo gaza s prityazheniem mezhdu chastitsami”, Tr. Mosk. mat. o-va., 17 (1967), 197–212

[21] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[22] Dobrushin R. L., “Gibbsovskie sluchainye polya dlya reshetchatykh sistem s poparnym vzaimodeistviem”, Funkts. anal. prilozh., 4:1 (1968), 31–43 | Zbl

[23] Klyuev A. S., Virchenko Yu. P., “Otsenka energii vektornoi reshetochnoi modeli s periodicheskimi granichnymi usloviyami”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 11 (208):39 (2015), 121–125

[24] Minlos R. A., “Lektsii po statisticheskoi fizike”, Usp. mat. nauk., 23:1 (1968), 133–190 | MR | Zbl

[25] Minlos R. A., Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002

[26] Pastur L. A., “Spektralnaya teoriya uravnenii Kirkvuda—Zaltsburga v konechnom ob'eme”, Teor. mat. fiz., 18:2 (1974), 233–242

[27] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[28] Dobrushin R. L., “Existence of phase transition in models of a lattice gas”, Proc. V Berkeley Symp. Mat. Stat. Prob., VII A (1967), 73–87

[29] Gallavotti G., Statistical Mechanics, Univ. di Roma, Roma, 1999 | MR

[30] Gallavotti G., Miracle-Sole S., “Statistical mechanics of lattice systems”, Commun. Math. Phys., 5 (1967), 317–323 | DOI | MR | Zbl

[31] Ginibre J., Grossman A., Ruelle D., “Condensation of lattice gases”, Commun. Math. Phys., 3 (1966), 187–193 | DOI | MR

[32] Kirkwood J. G., Salsburg Z. W., “The statistical mechanical theory of molecular distribution functions in liquids”, Discuss. Faraday Soc., 15:1 (1953), 28–34 | DOI

[33] Mayer J., Harrison S. F., “Statistical mechanics of condensing systems. III”, J. Chem. Phys., 6:2 (1938), 87–100 | DOI

[34] Mayer J., Harrison S. F., “Statistical mechanics of condensing systems. IV”, J. Chem. Phys., 6:2 (1938), 101–104 | DOI

[35] Ruelle D., “Correlation functions of classical gases”, Ann. Phys., 25:1 (1963), 109–120 | DOI | MR

[36] Yang C. N., Lee T. D., “Statistical theory of equation of state and phase transitions. I. Theory of condensation”, Phys. Rev., 87 (1952), 404–409 | DOI | MR | Zbl

[37] Yang C. N., Lee T. D., “Statistical theory of equation of state and phase transitions. II. Lattice gas and Ising model”, Phys. Rev., 87 (1952), 410–419 | DOI | MR | Zbl