Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_195_a1, author = {Yu. P. Virchenko}, title = {Solvability of the system of integral equations of lattice models of statistical mechanics}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {10--24}, publisher = {mathdoc}, volume = {195}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/} }
TY - JOUR AU - Yu. P. Virchenko TI - Solvability of the system of integral equations of lattice models of statistical mechanics JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 10 EP - 24 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/ LA - ru ID - INTO_2021_195_a1 ER -
%0 Journal Article %A Yu. P. Virchenko %T Solvability of the system of integral equations of lattice models of statistical mechanics %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 10-24 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/ %G ru %F INTO_2021_195_a1
Yu. P. Virchenko. Solvability of the system of integral equations of lattice models of statistical mechanics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 10-24. http://geodesic.mathdoc.fr/item/INTO_2021_195_a1/
[19] Basuev A. G., “Gamiltonian granitsy razdela faz i fazovye perekhody pervogo roda. Obobschenie teoremy Li—Yanga”, Teor. mat. fiz., 153:1 (2007), 98–123 | MR | Zbl
[20] Berezin F. A., Sinai Ya. G., “Suschestvovanie fazovogo perekhoda dlya reshetchatogo gaza s prityazheniem mezhdu chastitsami”, Tr. Mosk. mat. o-va., 17 (1967), 197–212
[21] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968
[22] Dobrushin R. L., “Gibbsovskie sluchainye polya dlya reshetchatykh sistem s poparnym vzaimodeistviem”, Funkts. anal. prilozh., 4:1 (1968), 31–43 | Zbl
[23] Klyuev A. S., Virchenko Yu. P., “Otsenka energii vektornoi reshetochnoi modeli s periodicheskimi granichnymi usloviyami”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 11 (208):39 (2015), 121–125
[24] Minlos R. A., “Lektsii po statisticheskoi fizike”, Usp. mat. nauk., 23:1 (1968), 133–190 | MR | Zbl
[25] Minlos R. A., Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002
[26] Pastur L. A., “Spektralnaya teoriya uravnenii Kirkvuda—Zaltsburga v konechnom ob'eme”, Teor. mat. fiz., 18:2 (1974), 233–242
[27] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971
[28] Dobrushin R. L., “Existence of phase transition in models of a lattice gas”, Proc. V Berkeley Symp. Mat. Stat. Prob., VII A (1967), 73–87
[29] Gallavotti G., Statistical Mechanics, Univ. di Roma, Roma, 1999 | MR
[30] Gallavotti G., Miracle-Sole S., “Statistical mechanics of lattice systems”, Commun. Math. Phys., 5 (1967), 317–323 | DOI | MR | Zbl
[31] Ginibre J., Grossman A., Ruelle D., “Condensation of lattice gases”, Commun. Math. Phys., 3 (1966), 187–193 | DOI | MR
[32] Kirkwood J. G., Salsburg Z. W., “The statistical mechanical theory of molecular distribution functions in liquids”, Discuss. Faraday Soc., 15:1 (1953), 28–34 | DOI
[33] Mayer J., Harrison S. F., “Statistical mechanics of condensing systems. III”, J. Chem. Phys., 6:2 (1938), 87–100 | DOI
[34] Mayer J., Harrison S. F., “Statistical mechanics of condensing systems. IV”, J. Chem. Phys., 6:2 (1938), 101–104 | DOI
[35] Ruelle D., “Correlation functions of classical gases”, Ann. Phys., 25:1 (1963), 109–120 | DOI | MR
[36] Yang C. N., Lee T. D., “Statistical theory of equation of state and phase transitions. I. Theory of condensation”, Phys. Rev., 87 (1952), 404–409 | DOI | MR | Zbl
[37] Yang C. N., Lee T. D., “Statistical theory of equation of state and phase transitions. II. Lattice gas and Ising model”, Phys. Rev., 87 (1952), 410–419 | DOI | MR | Zbl