Asymptotic analysis of an elliptic boundary-value problem in a wedge
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an elliptic pseudodifferential equation, whose symbol is independent of the spatial variable, in a wedge-shaped domain of a multidimensional space. Under a special wave factorization of the symbol, we construct in the Sobolev–Slobodetskii space the general solution of the equation, which depends on one arbitrary function. The equation is supplemented by an integral condition, which allows one to extract a unique solution. We examine the behavior of this solution in the case where the aperture of the wedge tends to zero.
Keywords: pseudodifferential operator, elliptic boundary-value problem, wave factorization of a symbol, general solution, asymptotic behavior, solvability condition.
@article{INTO_2021_195_a0,
     author = {V. B. Vasilev (Vasilyev) and Sh. Kutaiba and A. Z. Yaduta},
     title = {Asymptotic analysis of an elliptic boundary-value problem in a wedge},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a0/}
}
TY  - JOUR
AU  - V. B. Vasilev (Vasilyev)
AU  - Sh. Kutaiba
AU  - A. Z. Yaduta
TI  - Asymptotic analysis of an elliptic boundary-value problem in a wedge
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 9
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a0/
LA  - ru
ID  - INTO_2021_195_a0
ER  - 
%0 Journal Article
%A V. B. Vasilev (Vasilyev)
%A Sh. Kutaiba
%A A. Z. Yaduta
%T Asymptotic analysis of an elliptic boundary-value problem in a wedge
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-9
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a0/
%G ru
%F INTO_2021_195_a0
V. B. Vasilev (Vasilyev); Sh. Kutaiba; A. Z. Yaduta. Asymptotic analysis of an elliptic boundary-value problem in a wedge. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2021_195_a0/

[1] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, KomKniga, M., 2010

[2] Vasilev V. B., “Psevdodifferentsialnye uravneniya v konusakh s tochkami sopryazheniya na granitse”, Differ. uravn., 51:9 (2015), 1123–1135 | Zbl

[3] Vasilev V. B., “Psevdodifferentsialnye uravneniya na mnogoobraziyakh so slozhnymi osobennostyami na granitse”, Sib. zh. chist. prikl. mat., 16:3 (2016), 3–14 | Zbl

[4] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964

[5] Vladimirov V. S., Metody teorii obobschennykh funktsii, Nauka, M., 1978

[6] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[7] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[8] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[9] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1981 | MR

[10] Eskin G. I., “Zadacha sopryazheniya dlya uravnenii glavnogo tipa s dvumya nezavisimymi peremennymi”, Tr. Mosk. mat. o-va., 21 (1970), 245–292 | Zbl

[11] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973

[12] Egorov Yu. V., Schulze B. W., Pseudo-Differential Operators, Singularities, Applications, Birkhäuser-Verlag, Basel, 1997 | MR | Zbl

[13] Milkhin S. G., Prößdorf S., Singular Integral Operators, Akademie-Verlag, Berlin, 1986 | MR

[14] Nazaikinskii V. E., Savin A. Yu., Schulze B. W., Sternin B. Yu., Elliptic Theory on Singular Manifolds, Chapman Hall/CRC, Boca Raton, 2006 | MR | Zbl

[15] Schulze B. W., Boundary-Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester, 1998 | MR | Zbl

[16] Schulze B. W., Sternin B., Shatalov V., Differential Equations on Singular Manifolds. Semiclassical Theory and Operator Algebras, Wiley, Berlin, 1998 | MR | Zbl

[17] Vasilyev V. B., “Asymptotical analysis of singularities for pseudo differential equations in canonical nonsmooth domains”, Integral Methods in Science and Engineering. Computational and Analytic Aspects, eds. Constanda C., Harris P. J., Birkhäuser, Boston, 2011, 379–390 | MR

[18] Vasilyev V. B., “On the Dirichlet and Neumann problems in multidimensional cone”, Math. Bohem., 139 (2014), 333–340 | DOI | MR | Zbl

[19] Vasilyev V. B., “On certain elliptic problems for pseudo-differential equations in a polyhedral cone”, Adv. Dyn. Syst. Appl., 9 (2014), 227–237 | MR

[20] Vasilyev V. B., “On the asymptotic expansion of certain plane singular integral operators”, Boundary-Value Probl., 116 (2017), 1–13 | MR

[21] Vasilyev V. B., “Pseudo-differential equations, wave factorization, and related problems”, Math. Meth. Appl. Sci., 41 (2018), 9252–9263 | DOI | MR | Zbl

[22] Vasilyev V. B., “Pseudo-differential operators on manifolds with a singular boundary”, Modern Problems in Applied Analysis, eds. Drygas P., Rogosin S., Birkhäuser, Cham, 2018, 169–179 | DOI | MR | Zbl

[23] Vasilyev V. B., “Pseudo-differential equations and conical potentials: 2-dimensional case”, Opusc. Math., 39 (2019), 109–124 | DOI | MR | Zbl