Voir la notice du chapitre de livre
Mots-clés : Pascal's triangle.
@article{INTO_2021_194_a9,
author = {I. M. Erusalimskyi and A. V. Ivantsov},
title = {{\textquotedblleft}${n}$-$1${\textquotedblright} paths on lattice graphs. {Random} walks},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {107--114},
year = {2021},
volume = {194},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a9/}
}
TY - JOUR
AU - I. M. Erusalimskyi
AU - A. V. Ivantsov
TI - “${n}$-$1$” paths on lattice graphs. Random walks
JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY - 2021
SP - 107
EP - 114
VL - 194
UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a9/
LA - ru
ID - INTO_2021_194_a9
ER -
%0 Journal Article
%A I. M. Erusalimskyi
%A A. V. Ivantsov
%T “${n}$-$1$” paths on lattice graphs. Random walks
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 107-114
%V 194
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a9/
%G ru
%F INTO_2021_194_a9
I. M. Erusalimskyi; A. V. Ivantsov. “${n}$-$1$” paths on lattice graphs. Random walks. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 107-114. http://geodesic.mathdoc.fr/item/INTO_2021_194_a9/
[1] Erusalimskii Ya. M., “Sluchainye bluzhdaniya po grafu reshetke i kombinatornye tozhdestva”, Inzh. vestn. Dona., 2:2 (2015), 12
[2] Erusalimskii Ya. M., “2 i 3 puti na grafe i kombinatornye tozhdestva”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 1 (193) (2017), 25–30
[3] Erusalimskii Ya. M., Treugolnik Paskalya: kombinatorika i sluchainye bluzhdaniya, Izd-vo YuFU, Rostov-na-Donu–Taganrog, 2017
[4] Erusalimskii Ya. M., “2–3 puti na grafe-reshetke. Sluchainye bluzhdaniya”, Mat. zametki., 104:3 (2018), 396–406 | MR | Zbl
[5] Erusalimskii Ya. M., Vodolazov N. N., “Nestatsionarnyi i sluchainyi potok v seti”, Mat. Vseross. konf. «Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-KhKh. Sovremennye metody teorii kraevykh zadach» (3–9 maya 2008 g., Voronezh), VGU, Voronezh, 2009, 56–57
[6] Erusalimskii Ya. M., Petrosyan A. G., “Sluchainye protsessy v setyakh s bipolyarnoi magnitnostyu”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 11 (2005), 10–16
[7] Erusalimskii Ya. M., Skorokhodov V. A., “Grafy s ventilnoi dostizhimostyu. Markovskie protsessy i potoki v setyakh”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2 (2003), 3–5
[8] Erusalimskii Ya. M., Skorokhodov V. A., Kuzminova M. V., Petrosyan A. G., Grafy s nestandartnoi dostizhimostyu: zadachi, prilozheniya, YuFU, Rostov-na-Donu, 2009
[9] Zhilyakova L. Yu., “Ergodicheskie tsiklicheskie resursnye seti. I. Kolebaniya i ravnovesnye sostoyaniya pri malykh resursakh”, Upravl. bol. sist., 43 (2013), 34–54
[10] Zhilyakova L. Yu., “Ergodicheskie tsiklicheskie resursnye seti. II. Bolshie resursy”, Upravl/. bol. sist., 45 (2013), 6–29
[11] Zhilyakova L. Yu., Kuznetsov O. P., Teoriya resursnykh setei, INFRA-M, M., 2017
[12] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978
[13] Malyshev V. A., Sluchainye bluzhdaniya. Uravneniya Vinera—Khopfa. Avtomorfizmy Galua, MGU, M., 1970
[14] Malyshev V. A., “O reshenii uravnenii Vinera—Khopfa v chetverti ploskosti”, Dokl. AN SSSR., 187:6 (1969), 1066–1069
[15] Pasenchuk A. E., “Ob odnoi zadache sluchainogo bluzhdaniya v chetverti ploskosti”, Usp. mat. nauk., 33:6 (1978), 229–230 | MR
[16] Rabinovich V. S., “Akusticheskaya difraktsiya na periodicheskikh grafakh”, Funkts. anal. prilozh., 48:4 (2014), 77–83 | Zbl
[17] Erusalimskiy I. M., “Graph–lattice: random walk and combinatorial identities”, Boletin de la Sociedad Matematica Mexicana, 22:2 (2016), 329–335 | DOI | MR | Zbl
[18] Ford L. R., Fulkerson D. R., Flows in Networks, Princeton Univ. Press, 1962 | MR | Zbl
[19] Kuznetsov Oleg P., Zhilyakova Ludmila Yu., “Nonsymmetric resource networks. The study of limit states”, Management and Production Engineering Review, 2:3, September (2011), 33–39
[20] Rabinovich V., “Diffraction by periodic graphs”, Complex Var. Ellipt. Equations., 59:4 (2013), 578–598 | MR
[21] Rabinovich V., “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russian Journal of Mathematical Physics, 20:4 (2013), 508–522 | DOI | MR | Zbl
[22] Rabinovich V. S., Roch S., “The essential spectrum of Schrödinger operators on lattice”, J. Phys. A: Math. Theor., 39 (2006), 8377–8394 | MR | Zbl
[23] Rabinovich V. S., Roch S., “Essential spectra of difference operators on $Z^n$-periodic graphs”, J. Phys. A: Math. Theor., 40 (2007), 10109–10128 | DOI | MR | Zbl
[24] Rabinovich V., Roch S., “Pseudodifferential operators on periodic graphs”, Integr. Equ. Oper. Theory., 72:2 (2012), 197–217 | DOI | MR | Zbl
[25] Zhilyakova L. Yu., “Dynamic graph models and their properties”, Automat. Remote Control., 76:8, 1417-–1435 | DOI | MR | Zbl