Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 92-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the asymptotic behavior of solutions of integro-differential equations on the basis of spectral analysis of their symbols. For this, we represent strong solutions of these equations as the sum of terms corresponding to the real and non-real parts of the spectrum of symbols of these equations.
Keywords: integro-differential equation, operator-function, spectral analysis.
@article{INTO_2021_194_a8,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {Representation of solutions of {Volterra} integro-differential equations with fractional-exponential kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {92--106},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 92
EP  - 106
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/
LA  - ru
ID  - INTO_2021_194_a8
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 92-106
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/
%G ru
%F INTO_2021_194_a8
V. V. Vlasov; N. A. Rautian. Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 92-106. http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/

[6] Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyazkov D. Yu., Samarin V. A., Shamaev A. S., “Spektralnye svoistva kombinirovannykh sred”, Sovr. probl. mat. mekh., 5:1 (2009), 134–155

[7] Vlasov V. V., Rautian N. A., “O svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teorii teplomassoobmena”, Tr. Mosk. mat. o-va., 75:2 (2014), 131–155 | MR

[8] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 58 (2015), 22–42

[9] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost volterrovykh integro-differentsialnykh uravnenii v gilbertovom prostranstve”, Differ. uravn., 52:9 (2016), 1168–1177 | Zbl

[10] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[11] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 64:1 (2018), 60–73 | MR

[12] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz volterrovykh integrodifferentsialnykh uravnenii s singulyarnymi yadrami”, Dokl. RAN., 482:6 (2018), 635–638 | Zbl

[13] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i predstavlenie reshenii volterrovykh integro-differentsialnykh uravnenii, voniznikayuschikh v teorii vyazkouprugosti”, Differ. uravn., 55:4 (2019), 574–587 | Zbl

[14] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v zadachakh nasledstvennoi mekhaniki”, Tr. semin. im. I. G. Petrovskogo., 32 (2019), 91–110

[15] Vlasov V. V., Rautian N. A., “Spektralnyi analiz i predstavlenie reshenii integro-differentsialnykh uravnenii s drobno-eksponentsialnymi yadrami”, Tr. Mosk. mat. o-va., 11 (2019), 41–56

[16] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[17] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[18] Lykov A. V., Problema teplo- i massoobmena, Nauka i tekhnika, Minsk, 1976 | MR

[19] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[20] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York, 2012 | MR | Zbl

[21] Desch W., Miller R., “Exponential stabilization of Volterra Integrodifferential equations in Hilbert space”, J. Differ. Equations., 70 (1987), 366–389 | DOI | MR | Zbl

[22] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin-Type Equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl

[23] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[24] Lions J. L. and Magenes E., Nonhomogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR

[25] Pandolfi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR | Zbl

[26] Prüss J., Evolutionary Integral Equations amd Applications, Birkhäuser, Basel–Baston–Berlin, 1993 | MR

[27] Vlasov V. V., Rautian N. A., “Well-deffined solvability and spectral analysis of abstract hyperbolic equations”, J. Math. Sci., 179:3 (2011), 390–415 | DOI | MR

[28] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equations., 16:4 (2009), 751–768 | MR | Zbl

[29] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differ. Integral Equations., 4:6 (1991), 1325–1351 | MR | Zbl