Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a8, author = {V. V. Vlasov and N. A. Rautian}, title = {Representation of solutions of {Volterra} integro-differential equations with fractional-exponential kernels}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {92--106}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/} }
TY - JOUR AU - V. V. Vlasov AU - N. A. Rautian TI - Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 92 EP - 106 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/ LA - ru ID - INTO_2021_194_a8 ER -
%0 Journal Article %A V. V. Vlasov %A N. A. Rautian %T Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 92-106 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/ %G ru %F INTO_2021_194_a8
V. V. Vlasov; N. A. Rautian. Representation of solutions of Volterra integro-differential equations with fractional-exponential kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 92-106. http://geodesic.mathdoc.fr/item/INTO_2021_194_a8/
[6] Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyazkov D. Yu., Samarin V. A., Shamaev A. S., “Spektralnye svoistva kombinirovannykh sred”, Sovr. probl. mat. mekh., 5:1 (2009), 134–155
[7] Vlasov V. V., Rautian N. A., “O svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teorii teplomassoobmena”, Tr. Mosk. mat. o-va., 75:2 (2014), 131–155 | MR
[8] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 58 (2015), 22–42
[9] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost volterrovykh integro-differentsialnykh uravnenii v gilbertovom prostranstve”, Differ. uravn., 52:9 (2016), 1168–1177 | Zbl
[10] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016
[11] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 64:1 (2018), 60–73 | MR
[12] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz volterrovykh integrodifferentsialnykh uravnenii s singulyarnymi yadrami”, Dokl. RAN., 482:6 (2018), 635–638 | Zbl
[13] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i predstavlenie reshenii volterrovykh integro-differentsialnykh uravnenii, voniznikayuschikh v teorii vyazkouprugosti”, Differ. uravn., 55:4 (2019), 574–587 | Zbl
[14] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v zadachakh nasledstvennoi mekhaniki”, Tr. semin. im. I. G. Petrovskogo., 32 (2019), 91–110
[15] Vlasov V. V., Rautian N. A., “Spektralnyi analiz i predstavlenie reshenii integro-differentsialnykh uravnenii s drobno-eksponentsialnymi yadrami”, Tr. Mosk. mat. o-va., 11 (2019), 41–56
[16] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[17] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970
[18] Lykov A. V., Problema teplo- i massoobmena, Nauka i tekhnika, Minsk, 1976 | MR
[19] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977
[20] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York, 2012 | MR | Zbl
[21] Desch W., Miller R., “Exponential stabilization of Volterra Integrodifferential equations in Hilbert space”, J. Differ. Equations., 70 (1987), 366–389 | DOI | MR | Zbl
[22] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin-Type Equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl
[23] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl
[24] Lions J. L. and Magenes E., Nonhomogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR
[25] Pandolfi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR | Zbl
[26] Prüss J., Evolutionary Integral Equations amd Applications, Birkhäuser, Basel–Baston–Berlin, 1993 | MR
[27] Vlasov V. V., Rautian N. A., “Well-deffined solvability and spectral analysis of abstract hyperbolic equations”, J. Math. Sci., 179:3 (2011), 390–415 | DOI | MR
[28] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equations., 16:4 (2009), 751–768 | MR | Zbl
[29] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differ. Integral Equations., 4:6 (1991), 1325–1351 | MR | Zbl