Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, using the Fourier method, we obtain a classical solution of the mixed problem for the wave equation on the simplest geometric graph consisting of two edges, one of which forms a cycle. We apply an approach based on the method of contour integration of the resolvent of an operator, which allows one to obtain a classical solution to the problem under minimal conditions on the initial data and, at the same time, to avoid a laborious study of the refined asymptotics of the eigenvalues and eigenfunctions of the corresponding operator. The cases of continuous and summable potentials are considered.
Keywords:
mixed problem, wave equation, graph, summable potential, Fourier method.
@article{INTO_2021_194_a7,
author = {M. Sh. Burlutskaya and A. V. Kiseleva and Ya. P. Korzhova},
title = {Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {78--91},
publisher = {mathdoc},
volume = {194},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/}
}
TY - JOUR AU - M. Sh. Burlutskaya AU - A. V. Kiseleva AU - Ya. P. Korzhova TI - Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 78 EP - 91 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/ LA - ru ID - INTO_2021_194_a7 ER -
%0 Journal Article %A M. Sh. Burlutskaya %A A. V. Kiseleva %A Ya. P. Korzhova %T Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 78-91 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/ %G ru %F INTO_2021_194_a7
M. Sh. Burlutskaya; A. V. Kiseleva; Ya. P. Korzhova. Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/