Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a7, author = {M. Sh. Burlutskaya and A. V. Kiseleva and Ya. P. Korzhova}, title = {Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {78--91}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/} }
TY - JOUR AU - M. Sh. Burlutskaya AU - A. V. Kiseleva AU - Ya. P. Korzhova TI - Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 78 EP - 91 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/ LA - ru ID - INTO_2021_194_a7 ER -
%0 Journal Article %A M. Sh. Burlutskaya %A A. V. Kiseleva %A Ya. P. Korzhova %T Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 78-91 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/ %G ru %F INTO_2021_194_a7
M. Sh. Burlutskaya; A. V. Kiseleva; Ya. P. Korzhova. Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/
[1] Burlutskaya M. Sh., “Smeshannaya zadacha s involyutsiei na grafe iz dvukh reber s tsiklom”, Dokl. RAN., 447:5 (2012), 479–482 | MR | Zbl
[2] Burlutskaya M. Sh., “Metod Fure v smeshannoi zadache dlya volnovogo uravneniya na grafe”, Dokl. RAN., 465:5 (2015), 519–522 | MR | Zbl
[3] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN., 458:2 (2014), 138–140 | MR | Zbl
[4] Burlutskaya M. Sh., Khromov A. P., “Smeshannaya zadacha dlya volnovogo uravneniya s summiruemym potentsialom v sluchae dvukhtochechnykh granichnykh uslovii raznykh poryadkov”, Differ. uravn., 53:4 (2017), 505–515 | Zbl
[5] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 51–63 | MR
[6] Golovko N. I., Golovaneva F. V., Zvereva M. B., Shabrov S. A., “O vozmozhnosti primeneniya metoda Fure k raznoporyadkovoi matematicheskoi modeli”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 1 (2017), 91–98 | Zbl
[7] Kulaev R. Ch., “Teorema suschestvovaniya dlya parabolicheskoi smeshannoi zadachi na grafe s kraevymi usloviyami, soderzhaschimi proizvodnye po vremeni”, Tr. In-ta mat. mekh. UrO RAN., 16:2 (2010), 139-–148 | MR
[8] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR
[9] Naidyuk F. O., Desyatirikova E. N., Proskurina D. K., “Chislennoe reshenie zadach o kolebaniyakh”, Vestn. Voronezh. gos. un-ta. Ser. Sist. anal. inform. tekhn., 1 (2013), 55–60
[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[11] Pokornyi Yu. V., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004
[12] Provotorov V. V., “Sobstvennye funktsii zadachi Shturma—Liuvillya na grafe-zvezde”, Mat. sb., 199:10 (2008), 105–126 | MR | Zbl
[13] Provotorov V. V., Volkova A. S., Nachalno-kraevye zadachi s raspredelennymi parametrami na grafe, Nauchnaya kniga, Voronezh, 2014
[14] Pryadiev V. L., “Odin podkhod k opisaniyu konechnoi formy resheniya volnovogo uravneniya na prostranstvennoi seti”, Tr. Mezhdunar. Krymskoi osennei shkoly-simpoziuma (KROMSh–15) «Spektralnye i evolyutsionnye zadachi» (17–29 sentyabrya 2004 g., Sevastopol, Laspi), Simferopol, 2005, 132–139
[15] Pryadiev V. L., “Chislennaya skhema resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti pri obobschenno-gladkikh usloviyakh transmissii”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 67:8/2 (2008), 195-–202
[16] Pryadiev V. L., Korovina O. V., “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 9:3 (2009), 37–46
[17] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964
[18] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | Zbl
[19] Burlutskaya M., “On a resolvent approach in a mixed problem for the wave equation on a graph”, Mem. Differ. Equations Math. Phys., 72 (2017), 37–44 | MR
[20] Zvereva M., “String oscillations simulation with nonlinear conditions”, Mem. Differ. Equations Math. Phys., 72 (2017), 141–150 | MR | Zbl