Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using the Fourier method, we obtain a classical solution of the mixed problem for the wave equation on the simplest geometric graph consisting of two edges, one of which forms a cycle. We apply an approach based on the method of contour integration of the resolvent of an operator, which allows one to obtain a classical solution to the problem under minimal conditions on the initial data and, at the same time, to avoid a laborious study of the refined asymptotics of the eigenvalues and eigenfunctions of the corresponding operator. The cases of continuous and summable potentials are considered.
Keywords: mixed problem, wave equation, graph, summable potential, Fourier method.
@article{INTO_2021_194_a7,
     author = {M. Sh. Burlutskaya and A. V. Kiseleva and Ya. P. Korzhova},
     title = {Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--91},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. V. Kiseleva
AU  - Ya. P. Korzhova
TI  - Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 78
EP  - 91
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/
LA  - ru
ID  - INTO_2021_194_a7
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. V. Kiseleva
%A Ya. P. Korzhova
%T Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 78-91
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/
%G ru
%F INTO_2021_194_a7
M. Sh. Burlutskaya; A. V. Kiseleva; Ya. P. Korzhova. Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/