Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using the Fourier method, we obtain a classical solution of the mixed problem for the wave equation on the simplest geometric graph consisting of two edges, one of which forms a cycle. We apply an approach based on the method of contour integration of the resolvent of an operator, which allows one to obtain a classical solution to the problem under minimal conditions on the initial data and, at the same time, to avoid a laborious study of the refined asymptotics of the eigenvalues and eigenfunctions of the corresponding operator. The cases of continuous and summable potentials are considered.
Keywords: mixed problem, wave equation, graph, summable potential, Fourier method.
@article{INTO_2021_194_a7,
     author = {M. Sh. Burlutskaya and A. V. Kiseleva and Ya. P. Korzhova},
     title = {Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--91},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. V. Kiseleva
AU  - Ya. P. Korzhova
TI  - Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 78
EP  - 91
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/
LA  - ru
ID  - INTO_2021_194_a7
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. V. Kiseleva
%A Ya. P. Korzhova
%T Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 78-91
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/
%G ru
%F INTO_2021_194_a7
M. Sh. Burlutskaya; A. V. Kiseleva; Ya. P. Korzhova. Classical solution of the mixed problem for the wave equation on a graph with two edges and a cycle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/INTO_2021_194_a7/

[1] Burlutskaya M. Sh., “Smeshannaya zadacha s involyutsiei na grafe iz dvukh reber s tsiklom”, Dokl. RAN., 447:5 (2012), 479–482 | MR | Zbl

[2] Burlutskaya M. Sh., “Metod Fure v smeshannoi zadache dlya volnovogo uravneniya na grafe”, Dokl. RAN., 465:5 (2015), 519–522 | MR | Zbl

[3] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN., 458:2 (2014), 138–140 | MR | Zbl

[4] Burlutskaya M. Sh., Khromov A. P., “Smeshannaya zadacha dlya volnovogo uravneniya s summiruemym potentsialom v sluchae dvukhtochechnykh granichnykh uslovii raznykh poryadkov”, Differ. uravn., 53:4 (2017), 505–515 | Zbl

[5] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 51–63 | MR

[6] Golovko N. I., Golovaneva F. V., Zvereva M. B., Shabrov S. A., “O vozmozhnosti primeneniya metoda Fure k raznoporyadkovoi matematicheskoi modeli”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 1 (2017), 91–98 | Zbl

[7] Kulaev R. Ch., “Teorema suschestvovaniya dlya parabolicheskoi smeshannoi zadachi na grafe s kraevymi usloviyami, soderzhaschimi proizvodnye po vremeni”, Tr. In-ta mat. mekh. UrO RAN., 16:2 (2010), 139-–148 | MR

[8] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR

[9] Naidyuk F. O., Desyatirikova E. N., Proskurina D. K., “Chislennoe reshenie zadach o kolebaniyakh”, Vestn. Voronezh. gos. un-ta. Ser. Sist. anal. inform. tekhn., 1 (2013), 55–60

[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[11] Pokornyi Yu. V., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004

[12] Provotorov V. V., “Sobstvennye funktsii zadachi Shturma—Liuvillya na grafe-zvezde”, Mat. sb., 199:10 (2008), 105–126 | MR | Zbl

[13] Provotorov V. V., Volkova A. S., Nachalno-kraevye zadachi s raspredelennymi parametrami na grafe, Nauchnaya kniga, Voronezh, 2014

[14] Pryadiev V. L., “Odin podkhod k opisaniyu konechnoi formy resheniya volnovogo uravneniya na prostranstvennoi seti”, Tr. Mezhdunar. Krymskoi osennei shkoly-simpoziuma (KROMSh–15) «Spektralnye i evolyutsionnye zadachi» (17–29 sentyabrya 2004 g., Sevastopol, Laspi), Simferopol, 2005, 132–139

[15] Pryadiev V. L., “Chislennaya skhema resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti pri obobschenno-gladkikh usloviyakh transmissii”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 67:8/2 (2008), 195-–202

[16] Pryadiev V. L., Korovina O. V., “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 9:3 (2009), 37–46

[17] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964

[18] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | Zbl

[19] Burlutskaya M., “On a resolvent approach in a mixed problem for the wave equation on a graph”, Mem. Differ. Equations Math. Phys., 72 (2017), 37–44 | MR

[20] Zvereva M., “String oscillations simulation with nonlinear conditions”, Mem. Differ. Equations Math. Phys., 72 (2017), 141–150 | MR | Zbl