Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a4, author = {D. V. Belova}, title = {On one mixed problem with involution}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--54}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/} }
D. V. Belova. On one mixed problem with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/
[1] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differ. uravn., 40:5 (2004), 1126–1128 | Zbl
[2] Baskakov A. G., Uskova N. B., “Metod Fure dlya differentsialnykh uravnenii pervogo poryadka s involyutsiei i gruppy operatorov”, Ufim. mat. zh., 10:3 (2018), 11–-34 | MR | Zbl
[3] Burlutskaya M. Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2011), 64–72 | MR | Zbl
[4] Burlutskaya M. Sh., “O smeshannoi zadache dlya uravneniya pervogo poryadka s involyutsiei i s periodicheskimi kraevymi usloviyami”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 3–12 | MR | Zbl
[5] Burlutskaya M. Sh., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya sistemy uravnenii pervogo poryadka s nepreryvnym potentsialom”, Zh. vychisl. mat. mat. fiz., 59:3 (2019), 380–390 | MR | Zbl
[6] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. RAN., 435:2 (2010), 151–154 | MR | Zbl
[7] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadache dlya uravneniya pervogo poryadka s involyutsiei”, Zh. vychisl. mat. mat. fiz., 51:12 (2011), 2233–2246 | MR | Zbl
[8] Burlutskaya M. Sh., Khromov A. P., “Teorema Shteingauza o ravnoskhodimosti dlya funktsionalno-differentsialnykh operatorov”, Mat. zametki., 90:1 (2011), 22–33 | MR | Zbl
[9] Burlutskaya M. Sh., Khromov A. P., “Smeshannaya zadacha dlya prosteishego giperbolicheskogo uravneniya pervogo poryadka s involyutsiei”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 14:1 (2014), 10–20 | MR | Zbl
[10] Burlutskaya M. Sh., Khromov A. P., “Funktsionalno-differentsialnye operatory s involyutsiei i operatory Diraka s periodicheskimi kraevymi usloviyami”, Dokl. RAN., 454:1 (2014), 15–17 | MR | Zbl
[11] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 51–63 | MR
[12] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 1309–1312
[13] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo RGU, Rostov-na-Donu, 1994
[14] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Mat. zametki., 64:6 (1998), 932–949
[15] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equations., 17 (2017), 669–684 | DOI | MR | Zbl
[16] Kritskov L. V., Sarsenbi A. M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differ. Equations., 51:8 (2015), 984–990 | DOI | MR | Zbl