On one mixed problem with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a mixed problem for an equation with an involutive deviation in the argument and periodic boundary conditions. Using the Fourier method, we obtain a classical solution to the problem with minimal requirements for the initial data of the problem. Also, we used some methods of improving the convergence of the series representing a formal solution.
Keywords: functional differential operator, involution, mixed problem, Fourier method.
@article{INTO_2021_194_a4,
     author = {D. V. Belova},
     title = {On one mixed problem with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/}
}
TY  - JOUR
AU  - D. V. Belova
TI  - On one mixed problem with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 46
EP  - 54
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/
LA  - ru
ID  - INTO_2021_194_a4
ER  - 
%0 Journal Article
%A D. V. Belova
%T On one mixed problem with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 46-54
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/
%G ru
%F INTO_2021_194_a4
D. V. Belova. On one mixed problem with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/

[1] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differ. uravn., 40:5 (2004), 1126–1128 | Zbl

[2] Baskakov A. G., Uskova N. B., “Metod Fure dlya differentsialnykh uravnenii pervogo poryadka s involyutsiei i gruppy operatorov”, Ufim. mat. zh., 10:3 (2018), 11–-34 | MR | Zbl

[3] Burlutskaya M. Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2011), 64–72 | MR | Zbl

[4] Burlutskaya M. Sh., “O smeshannoi zadache dlya uravneniya pervogo poryadka s involyutsiei i s periodicheskimi kraevymi usloviyami”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 3–12 | MR | Zbl

[5] Burlutskaya M. Sh., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya sistemy uravnenii pervogo poryadka s nepreryvnym potentsialom”, Zh. vychisl. mat. mat. fiz., 59:3 (2019), 380–390 | MR | Zbl

[6] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. RAN., 435:2 (2010), 151–154 | MR | Zbl

[7] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadache dlya uravneniya pervogo poryadka s involyutsiei”, Zh. vychisl. mat. mat. fiz., 51:12 (2011), 2233–2246 | MR | Zbl

[8] Burlutskaya M. Sh., Khromov A. P., “Teorema Shteingauza o ravnoskhodimosti dlya funktsionalno-differentsialnykh operatorov”, Mat. zametki., 90:1 (2011), 22–33 | MR | Zbl

[9] Burlutskaya M. Sh., Khromov A. P., “Smeshannaya zadacha dlya prosteishego giperbolicheskogo uravneniya pervogo poryadka s involyutsiei”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 14:1 (2014), 10–20 | MR | Zbl

[10] Burlutskaya M. Sh., Khromov A. P., “Funktsionalno-differentsialnye operatory s involyutsiei i operatory Diraka s periodicheskimi kraevymi usloviyami”, Dokl. RAN., 454:1 (2014), 15–17 | MR | Zbl

[11] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 51–63 | MR

[12] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 1309–1312

[13] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo RGU, Rostov-na-Donu, 1994

[14] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Mat. zametki., 64:6 (1998), 932–949

[15] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equations., 17 (2017), 669–684 | DOI | MR | Zbl

[16] Kritskov L. V., Sarsenbi A. M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differ. Equations., 51:8 (2015), 984–990 | DOI | MR | Zbl