On one mixed problem with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a mixed problem for an equation with an involutive deviation in the argument and periodic boundary conditions. Using the Fourier method, we obtain a classical solution to the problem with minimal requirements for the initial data of the problem. Also, we used some methods of improving the convergence of the series representing a formal solution.
Keywords: functional differential operator, involution, mixed problem, Fourier method.
@article{INTO_2021_194_a4,
     author = {D. V. Belova},
     title = {On one mixed problem with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/}
}
TY  - JOUR
AU  - D. V. Belova
TI  - On one mixed problem with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 46
EP  - 54
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/
LA  - ru
ID  - INTO_2021_194_a4
ER  - 
%0 Journal Article
%A D. V. Belova
%T On one mixed problem with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 46-54
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/
%G ru
%F INTO_2021_194_a4
D. V. Belova. On one mixed problem with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/