On one mixed problem with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine a mixed problem for an equation with an involutive deviation in the argument and periodic boundary conditions. Using the Fourier method, we obtain a classical solution to the problem with minimal requirements for the initial data of the problem. Also, we used some methods of improving the convergence of the series representing a formal solution.
Keywords:
functional differential operator, involution, mixed problem, Fourier method.
@article{INTO_2021_194_a4,
author = {D. V. Belova},
title = {On one mixed problem with involution},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {46--54},
publisher = {mathdoc},
volume = {194},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/}
}
D. V. Belova. On one mixed problem with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_194_a4/