Local dynamics of a pair of Hutchinson equations with competitive and diffusion coupling
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 155-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the dynamics of a system consisting of two coupled Hutchinson equations taking into account the competitive and diffusion coupling between populations. A local asymptotic analysis of the system is performed in the case where the coupling coefficients are small and the parameters of the oscillators are close to the values that provide the Andronov–Hopf bifurcation. We also examine the scenario of phase rearrangements of the system under a change in the diffusion parameter and analyze the dependence of this scenario on the coefficient of competition coupling.
Keywords: Hutchinson equation, competitive coupling, method of normal forms, asymptotics, stability.
Mots-clés : diffusion coupling
@article{INTO_2021_194_a13,
     author = {E. A. Marushkina and E. S. Samsonova},
     title = {Local dynamics of a pair of {Hutchinson} equations with competitive and diffusion coupling},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {155--162},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a13/}
}
TY  - JOUR
AU  - E. A. Marushkina
AU  - E. S. Samsonova
TI  - Local dynamics of a pair of Hutchinson equations with competitive and diffusion coupling
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 155
EP  - 162
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a13/
LA  - ru
ID  - INTO_2021_194_a13
ER  - 
%0 Journal Article
%A E. A. Marushkina
%A E. S. Samsonova
%T Local dynamics of a pair of Hutchinson equations with competitive and diffusion coupling
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 155-162
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a13/
%G ru
%F INTO_2021_194_a13
E. A. Marushkina; E. S. Samsonova. Local dynamics of a pair of Hutchinson equations with competitive and diffusion coupling. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 155-162. http://geodesic.mathdoc.fr/item/INTO_2021_194_a13/

[1] Glyzin S. D., “Dinamicheskie svoistva prosteishikh konechnoraznostnykh approksimatsii kraevoi zadachi «reaktsiya-diffuziya»”, Differ. uravn., 33:6 (1997), 805–811 | MR | Zbl

[2] Glyzin S. D., “Statsionarnye rezhimy odnoi konechnoraznostnoi approksimatsii uravneniya Khatchinsona s diffuziei”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Yaroslavl, 1986, 112–127 | MR

[3] Glyzin S. D., “Uchet vozrastnykh grupp v uravnenii Khatchinsona”, Model. anal. inform. sist., 14:3 (2007), 29–42

[4] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, YarGU, Yaroslavl, 2006

[5] Gorchakova E. V., “Dinamika slabogo vzaimodeistviya v sisteme blizkikh vidov”, Model. anal. inform. sist., 18:1 (2011), 68–74

[6] Kaschenko S. A., “Dinamika logisticheskogo uravneniya s zapazdyvaniem i zapazdyvayuschim upravleniem”, Model. anal. inform. sist., 21:5 (2014), 61–77

[7] Kolesov Yu. S., Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI 1901-85, Yaroslavskii gosudarstvennyi universitet, Yaroslavl, 1985

[8] Glyzin S. D., “Age groups in Hutchinson equations”, Automat. Control Comp. Sci., 52:7 (2018), 714–727 | DOI

[9] Hutchinson G. E., “Circular causal system in ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI