On two-point boundary-value problems for the Sturm--Liouville and Dirac operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 144-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of completeness and basic property of systems of eigenfunctions and root functions are important questions of the spectral theory of non-self-adjoint differential operators with discrete spectra. In this paper, we give a brief survey of results on this topic for the Sturm–Liouville and Dirac operators with arbitrary two-point boundary conditions and arbitrary complex-valued summable potentials.
Keywords: Sturm–Liouville operator, Dirac operator, boundary-value problem, completeness, basis property.
@article{INTO_2021_194_a12,
     author = {A. S. Makin},
     title = {On two-point boundary-value problems for the {Sturm--Liouville} and {Dirac} operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a12/}
}
TY  - JOUR
AU  - A. S. Makin
TI  - On two-point boundary-value problems for the Sturm--Liouville and Dirac operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 144
EP  - 154
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a12/
LA  - ru
ID  - INTO_2021_194_a12
ER  - 
%0 Journal Article
%A A. S. Makin
%T On two-point boundary-value problems for the Sturm--Liouville and Dirac operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 144-154
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a12/
%G ru
%F INTO_2021_194_a12
A. S. Makin. On two-point boundary-value problems for the Sturm--Liouville and Dirac operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 144-154. http://geodesic.mathdoc.fr/item/INTO_2021_194_a12/

[1] Baskakov A. G., Derbyshev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom.”, Izv. RAN. Ser. mat., 75:3 (2011), 3–28 | MR | Zbl

[2] Biyarov B. N., “O spektralnykh svoistvakh korrektnykh suzhenii i rasshirenii operatora Shturma—Liuvillya”, Differ. uravn., 30:12 (1994), 2027–2032 | MR | Zbl

[3] Burlutskaya M. Sh., Kornev V. V., Khromov A. P., “Sistema Diraka s nedifferentsiruemym potentsialom i periodicheskimi kraevymi usloviyami”, Zh. vychisl. mat. mat. fiz., 52:8 (2012), 1621–1632 | Zbl

[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Mir, M., 1967

[5] Dzhakov P., Mityagin B. S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera”, Usp. mat. nauk., 61:4 (2006), 77–182 | MR | Zbl

[6] Ilin V. A., Kritskov L. V., “Svoistva spektralnykh razlozhenii, otvechayuschikh nesamosopryazhennym operatoram”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 96 (2006), 1–105

[7] Ilin V. A., “O svyazi mezhdu vidom kraevkh uslovii i svoistvami bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom razlozhenii po kornevym funktsiyam nesamosopryazhennogo differentsialnogo operatora”, Differ. uravn., 30:9 (1994), 1516–1529 | MR

[8] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam konkretnykh differentsialnykh operatorov”, Izv. vuzov. Ser. mat., 1964, no. 2, 82–93

[9] Kornev V. V., Khromov A. P., “Sistema Diraka s nedifferentsiruemym potentsialom i antiperiodicheskimi kraevymi usloviyami”, Izv. Saratov. gos. un-ta. Ser. mat. mekh. inform., 13:3 (2013), 28–35 | Zbl

[10] Lunev A. A., Malamud M. M., “O bazisnosti Rissa sistemy kornevykh vektorov dlya $2\times2$ sistemy tipa Diraka”, Dokl. RAN., 458:3 (2014), 1–6

[11] Lunev A. A., Malamud M. M., “O polnote sistemy kornevykh vektorov dlya sistem pervogo poryadka. Primenenie k zadache Redzhe”, Dokl. RAN., 453:3 (2013), 256–261

[12] Makin A. S., “O polnote sistemy kornevykh funktsii operatora Shturma-Liuvillya s vyrrozhdennymi kraevymi usloviyami”, Differ. uravn., 50:6 (2014), 835–839 | MR | Zbl

[13] Makin A. S., “O bazisnosti sistem kornevykh funktsii regulyarnykh kraevykh zadach dlya operatora Shturma—Liuvillya”, Differ. uravn., 42:12 (2006), 1646–1656 | MR | Zbl

[14] Makin A. S., “O skhodimosti razlozhenii po kornevym funktsiyam periodicheskoi kraevoi zadachi”, Dokl. RAN., 406:4 (2006), 452–457 | MR | Zbl

[15] Makin A. S., “Obratnye zadachi spektralnogo analiza dlya operatora Shturma—Liuvillya s regulyarnymi kraevymi usloviyami. I”, Differ. uravn., 43:10 (2007), 1334–1345 | MR | Zbl

[16] Makin A. S., “Obratnye zadachi spektralnogo analiza dlya operatora Shturma—Liuvillya s regulyarnymi kraevymi usloviyami. II”, Differ. uravn., 43:12 (2007), 1626–1636 | MR | Zbl

[17] Makin A. S., “O novom klasse kraevykh zadach dlya operatora Shturma—Liuvillya s neklassicheskoi asimptotikoi spektra”, Differ. uravn., 49:2 (2013), 260–264 | Zbl

[18] Makin A. S., “O dvukhtochechnoi kraevoi zadache dlya operatora Shturma—Liuvillya s neklassicheskoi asimptotikoi spektra”, Differ. uravn., 49:5 (2013), 564–572 | Zbl

[19] Makin A. S., “O bazisnykh svoistvakh sistemy kornevykh funktsii operatora Shturma—Liuvillya s vyrozhdennymi kraevymi usloviyami. I”, Differ. uravn., 54:10 (2018), 1367–1382 | MR | Zbl

[20] Makin A. S., “O bazisnykh svoistvakh sistemy kornevykh funktsii operatora Shturma—Liuvillya s vyrozhdennymi kraevymi usloviyami. II”, Differ. uravn., 54:12 (2018), 1610–1625 | MR | Zbl

[21] Malamud M. M., “O polnote sistemy kornevykh vektorov operatora Shturma—Liuvillya s obschimi kraevymi usloviyami”, Funkts. anal. prilozh., 42:3 (2008), 198–204 | MR | Zbl

[22] Marchenko V. A., Operatory Shturma—Diuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[23] Mityagin B. S., “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, Dokl. RAN., 393:4 (2003), 456–459 | MR

[24] Mikhailov V. P., “O bazisnosti Rissa v $L^2(0,1)$”, Dokl. AN SSSR., 144:5 (1962), 981–984

[25] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[26] Savchuk A. M., Sadovnichaya I. V., “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Sovr. mat. Fundam. napravl., 58 (2015), 128–152

[27] Lunyov A. A., Malamud M. M., Oridoroga L. L., Completeness property of one-dimensional perturbations of normal and spectral operators generated by first-order systems, arXiv: 1807.05345v1 [math.SP] | MR

[28] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 219–231 | DOI | MR | Zbl

[29] Birkhoff G. D., “Boundary-value and expansion problems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl

[30] Birkhoff G. D., Langer R. E., “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Am. Acad. Arts Sci., 58 (1923), 49–128 | DOI | MR | Zbl

[31] Coddington E. A. and Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955 | MR | Zbl

[32] Danford N. and Schwartz J. T., Linear Operators. III. Spectral Operators, Wiley, New York, 1971 | MR

[33] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[34] Djakov P., Mityagin B., “Bari—Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 43–462 | DOI | MR

[35] Djakov P., Mityagin B., “1D Dirac operators with special periodic potentials”, Bull. Pol. Acad. Sci. Math., 60:1 (2012), 59–75 | DOI | MR | Zbl

[36] Djakov P., Mityagin B., “Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, J. Approx. Theory., 164:7 (2012), 879–927 | DOI | MR | Zbl

[37] Djakov P., Mityagin B., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[38] Djakov P., Mityagin B., “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. Am. Math. Soc., 141:4 (2013), 1361–1375 | DOI | MR | Zbl

[39] Hoffman S., Second-Order Linear Differential Operators Defined by Irregular Boundary Conditions, Thesis., Yale University, 1957 | MR

[40] Lang P. and Locker J., “Spectral theory of two-point differential operators determined by $-D^2$. I. Spectral properties”, J. Math. Anal. Appl., 141 (1989), 538–558 | DOI | MR | Zbl

[41] Lang P. and Locker J., “Spectral theory of two-point differential operators determined by $-D^2$. II. Analysis of cases”, J. Math. Anal. Appl., 146 (1990), 148–191 | DOI | MR | Zbl

[42] Locker J., Spectral Theory of Non-self-adjoint Two-point Differential Operators, North-Holland, Amsterdam, 2003 | MR

[43] Locker J., “The spectral theory of second order two-point differential operators: I. A priori estimates for the eigenvalues and completeness”, Proc. Roy. Soc. Edinburgh. Sec. A., 121 (1992), 279–301 | DOI | MR | Zbl

[44] Locker J., “The spectral theory of second order two-point differential operators: II. Asymptotic expansions and the characteristic determinant”, J. Differ. Equations., 114 (1994), 72–287 | DOI | MR

[45] Locker J., “The spectral theory of second order two-point differential operators: III. The eigenvalues and their asymptotic formulas”, Rocky Mountain J. Math., 26 (1996), 679–706 | MR | Zbl

[46] Locker J., “The spectral theory of second-order two-point differential operators: IV. The associated projections and the subspace $S_\infty(L)$”, Rocky Mountain J. Math., 26 (1996), 1473–1498 | MR | Zbl

[47] Lunyov A., Malamud M., “On the completeness and Riesz basis property of root subspaces of boundary-value problems for first-order systems and applications”, J. Spectr. Theory, 5 (2015), 17–70 | DOI | MR | Zbl

[48] Lunyov A., Malamud M., “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[49] Malamud M., Oridoroga L., “On the completeness of root subspaces of boundary value problems for first-order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 | DOI | MR | Zbl

[50] Mityagin B., “Spectral expansions of one-dimensional periodic Dirac operators”, Dynam. PDE., 1:2 (2004), 125–191 | MR | Zbl

[51] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes., 96:5 (2014), 777–810 | DOI | MR | Zbl

[52] Stone M. H., “A comparison of the series of Fourier and Birkhoff”, Trans. Am. Math. Soc., 29 (1926), 695–761 | DOI | MR

[53] Stone M. H., “Irregular differential systems of order two and the related expansions problems”, Trans. Am. Soc., 29 (1927), 23–53 | DOI | MR | Zbl

[54] Tamarkin J., “Sur quelques points de la theorie des equations differentielles lineaires ordinaires et sur la generalisation de la serie de Fourier”, Rend. Circ. Matem. Palermo., 34 (1912), 345–382 | DOI | Zbl

[55] Tamarkin J., “Some general problem of the theory of ordinary linear differential equations and expansions of an arbitrary function in series of fundamental functions”, Math. Z., 1927, 1–54 | MR | Zbl

[56] Walker P. W., “A nonspectral Birkhoff-regilar differential operator”, Proc. Am. Math. Soc., 66 (1977), 187–188 | MR | Zbl