Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a11, author = {V. A. Kyrov}, title = {Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {124--143}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/} }
TY - JOUR AU - V. A. Kyrov TI - Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 124 EP - 143 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/ LA - ru ID - INTO_2021_194_a11 ER -
%0 Journal Article %A V. A. Kyrov %T Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 124-143 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/ %G ru %F INTO_2021_194_a11
V. A. Kyrov. Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 124-143. http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/
[1] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sib. mat. zh., 46:6 (2005), 1248–1264 | MR | Zbl
[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980
[3] Gromol D., Klingenberg V., Meier V., Rimonova geometriya v tselom, Mir, M., 1971
[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prolozheniya, Nauka, M., 1986 | MR
[5] Dyakonov V., Maple 10/11/12/13/14 v matematicheskikh vychisleniyakh, DMS, M., 2014
[6] Kyrov V. A., “Analiticheskii metod vlozheniya mnogomernykh psevdoevklidovykh geometrii”, Sib. elektron. mat. izv., 15 (2018), 741–758 | MR | Zbl
[7] Kyrov V. A., “Vlozhenie mnogomernykh osobykh rasshirenii psevdoevklidovykh geometrii”, Chelyab. fiz.-mat. zh., 4:3 (2018), 408–420 | Zbl
[8] Kyrov V. A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zh. industr. mat., 13:4 (2010), 38–51 | MR | Zbl
[9] Kyrov V. A., Bogdanova R. A., “Gruppy dvizhenii nekotorykh trekhmernykh geometrii maksimalnoi podvizhnosti”, Sib. mat. zh., 59:2 (2018), 412–421 | MR | Zbl
[10] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya evklidovoi i psevdoevklidovoi geometrii”, Tr. In-ta mat. mekh. UrO RAN., 23:2 (2017), 167–181 | MR
[11] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya simplekticheskoi geometrii”, Sib. elektron. mat. izv., 14 (2017), 657–672 | MR | Zbl
[12] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sist., 125 (1988), 90–103 | Zbl
[13] Mikhailichenko G. G., Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur, GAGU, Gorno-Altaisk, 2016
[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978
[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Fizmatgiz, M., 1963
[16] Mikhailichenko G. G., Borodin A. N., The mathematical basics and results of the theory of physical structures, 2012, arXiv: 1602.02795v1 [math-ph]
[17] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Am. Math. Soc., 6:3 (1982), 357–381 | DOI | MR