Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a11, author = {V. A. Kyrov}, title = {Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {124--143}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/} }
TY - JOUR AU - V. A. Kyrov TI - Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 124 EP - 143 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/ LA - ru ID - INTO_2021_194_a11 ER -
%0 Journal Article %A V. A. Kyrov %T Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 124-143 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/ %G ru %F INTO_2021_194_a11
V. A. Kyrov. Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 124-143. http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/