Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 124-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In modern geometry, the study of the geometries of maximum mobility is of great importance. Some of these geometries are well studied (for example, the Euclidean and Lobachevsky geometries, pseudo-Euclidean, symplectic, spherical geometry, etc.), while others (for example, Helmholtz and pseudo-Helmholtz geometries) have not yet attracted active attention of researchers. There is still no complete classification of the geometries of maximum mobility. In this work, we present some results concerning the classification problem for two- and three-dimensional geometries of local maximum mobility. This problem is reduced to functional equations of a special form and is solved by the embedding method in the class of analytic functions.
Keywords: geometry of maximum mobility, functional equation.
Mots-clés : motion group
@article{INTO_2021_194_a11,
     author = {V. A. Kyrov},
     title = {Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {124--143},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 124
EP  - 143
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/
LA  - ru
ID  - INTO_2021_194_a11
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 124-143
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/
%G ru
%F INTO_2021_194_a11
V. A. Kyrov. Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 124-143. http://geodesic.mathdoc.fr/item/INTO_2021_194_a11/

[1] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sib. mat. zh., 46:6 (2005), 1248–1264 | MR | Zbl

[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980

[3] Gromol D., Klingenberg V., Meier V., Rimonova geometriya v tselom, Mir, M., 1971

[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prolozheniya, Nauka, M., 1986 | MR

[5] Dyakonov V., Maple 10/11/12/13/14 v matematicheskikh vychisleniyakh, DMS, M., 2014

[6] Kyrov V. A., “Analiticheskii metod vlozheniya mnogomernykh psevdoevklidovykh geometrii”, Sib. elektron. mat. izv., 15 (2018), 741–758 | MR | Zbl

[7] Kyrov V. A., “Vlozhenie mnogomernykh osobykh rasshirenii psevdoevklidovykh geometrii”, Chelyab. fiz.-mat. zh., 4:3 (2018), 408–420 | Zbl

[8] Kyrov V. A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zh. industr. mat., 13:4 (2010), 38–51 | MR | Zbl

[9] Kyrov V. A., Bogdanova R. A., “Gruppy dvizhenii nekotorykh trekhmernykh geometrii maksimalnoi podvizhnosti”, Sib. mat. zh., 59:2 (2018), 412–421 | MR | Zbl

[10] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya evklidovoi i psevdoevklidovoi geometrii”, Tr. In-ta mat. mekh. UrO RAN., 23:2 (2017), 167–181 | MR

[11] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya simplekticheskoi geometrii”, Sib. elektron. mat. izv., 14 (2017), 657–672 | MR | Zbl

[12] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sist., 125 (1988), 90–103 | Zbl

[13] Mikhailichenko G. G., Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur, GAGU, Gorno-Altaisk, 2016

[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Fizmatgiz, M., 1963

[16] Mikhailichenko G. G., Borodin A. N., The mathematical basics and results of the theory of physical structures, 2012, arXiv: 1602.02795v1 [math-ph]

[17] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Am. Math. Soc., 6:3 (1982), 357–381 | DOI | MR