Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a10, author = {A. A. Kashchenko}, title = {Dynamics of one model with delay and a large parameter}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--123}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a10/} }
TY - JOUR AU - A. A. Kashchenko TI - Dynamics of one model with delay and a large parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 115 EP - 123 VL - 194 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_194_a10/ LA - ru ID - INTO_2021_194_a10 ER -
%0 Journal Article %A A. A. Kashchenko %T Dynamics of one model with delay and a large parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 115-123 %V 194 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_194_a10/ %G ru %F INTO_2021_194_a10
A. A. Kashchenko. Dynamics of one model with delay and a large parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2021_194_a10/
[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Diskretnye avtovolny v neironnykh sistemakh”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 840–858 | MR | Zbl
[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modelirovanie effekta vzryva v neironnykh sistemakh”, Mat. zametki., 93:5 (2013), 684–701 | MR | Zbl
[3] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989 | MR
[4] Kaschenko S. A., “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschikh zadachu khischnik-zhertva”, Dokl. AN SSSR., 266:4 (1982), 792–795 | MR | Zbl
[5] Kaschenko S. A., Maiorov V. V., Modeli volnovoi pamyati, Librokom, M., 2009
[6] Grigorieva E. V., Kaschenko S. A., Asymptotic Representation of Relaxation Oscillations in Lasers, Springer-Verlag, 2017 | MR | Zbl
[7] Kashchenko A. A., “A family of non-rough cycles in a system of two coupled delayed generators”, Automat. Control Comput. Sci., 51:7 (2017), 753–756 | DOI | MR
[8] Kashchenko A. A., “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equations., 266:1 (2019), 562–579 | DOI | MR | Zbl
[9] Kashchenko A. A., Kaschenko S. A., “Asymptotic behavior of the solutions of a system of two weakly coupled relaxation oscillators with delayed feedback”, Radiophys. Quant. Electronics., 61:8–9 (2019), 633–639 | DOI | MR
[10] Kilias T., Kelber K., Mogel A., and Schwarz W., “Electronic chaos generators-design and applications”, Int. J. Electronics., 79:6 (1995), 737–753 | DOI
[11] Preobrazhenskaia M. M., “The impulse-refractive mode in a neural network with ring synaptic interaction”, Automat. Control Comput. Sci., 52:7 (2018), 777–789 | DOI
[12] Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. I., “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78:4 (2006), 1213–1265 | DOI