Mathematical model of human intoxication at nuclear enterprises in ordinary production conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 8-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a mathematical model describing the contamination of a working room at an enterprise of the nuclear industry with products of hydrolysis of uranium hexafluoride. The model is based on boundary-value problems for the continuity equations written for the concentrations of molecules of gaseous substances and for the specific (with respect to the radii of aerosol particles) concentration of molecules of aerosol substances. These boundary-value problems are considered within the framework of the perturbation theory. We assume that the diffusion of gases proceeds much slower than hydrolysis, nucleation, and air exchange, and the diffusion of aerosols proceeds much slower than the macroscopic motion of aerosols and air exchange. We construct approximate solutions of the basic boundary-value problems of the mathematical model considered and estimate the errors.
Keywords: uranium hexafluoride, mathematical model, boundary-value problem, perturbation theory, method of boundary functions.
@article{INTO_2021_194_a1,
     author = {S. P. Babenko and A. V. Badin},
     title = {Mathematical model of human intoxication at nuclear enterprises in ordinary production conditions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {8--22},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a1/}
}
TY  - JOUR
AU  - S. P. Babenko
AU  - A. V. Badin
TI  - Mathematical model of human intoxication at nuclear enterprises in ordinary production conditions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 8
EP  - 22
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a1/
LA  - ru
ID  - INTO_2021_194_a1
ER  - 
%0 Journal Article
%A S. P. Babenko
%A A. V. Badin
%T Mathematical model of human intoxication at nuclear enterprises in ordinary production conditions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 8-22
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a1/
%G ru
%F INTO_2021_194_a1
S. P. Babenko; A. V. Badin. Mathematical model of human intoxication at nuclear enterprises in ordinary production conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 8-22. http://geodesic.mathdoc.fr/item/INTO_2021_194_a1/

[1] Babenko S. P., Badin A. V., “Ingalyatsionnoe i perkutannoe postuplenie v organizm cheloveka toksichnykh veschestv v usloviyakh povsednevnoi proizvodstvennoi deyatelnosti na predpriyatiyakh atomnoi promyshlennosti”, Mat. model., 18:3 (2006), 13–22 | Zbl

[2] Babenko S. P., Badin A. V., “Verifikatsiya matematicheskoi modeli, opisyvayuschei vozdeistvie na organizm cheloveka geksaftorida urana na predpriyatii atomnoi promyshlennosti”, Vestn. MGU. Ser. 3. Fiz. Astron., 2014, no. 2, 22–30

[3] Babenko S. P., Badin A. V., “O raschete determinirovannogo effekta proteinurii u sotrudnikov obogatitelnykh zavodov atomnoi promyshlennosti”, Gigiena i sanitariya., 97:4 (2018), 322–328

[4] Babenko S. P., Badin A. V., Badin V. I., “Otsenka zagryaznennosti toksichnymi veschestvami rabochikh pomeschenii na proizvodstvakh, ispolzuyuschikh geksaftorid urana”, Izv. Akad. prom. ekologii., 2004, no. 1, 79–88

[5] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[6] Vinberg E. B., Kurs algebry, MTsNMO, M., 2011

[7] Nadezhdinskii A. I., Nabiev Sh. Sh., Grigorev G. Yu., Vyazov I. E., Malyugin S. L., Ponomarev Yu. N., Ponurovskii Ya. Ya., Stavrovskii D. B., Bolyasov D. A., “Ekspress-metody izmereniya stepeni obogascheniya geksaftorida urana i sledovykh kolichestv UF$_6$ i NF v atmosfere na osnove diodnykh lazerov blizhnego i srednego IK-diapazona”, Optika atmosf. okeana., 18:9 (2005), 785–794

[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[9] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, M., 1984 | MR