Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a9, author = {V. I. Kachalov}, title = {Smoothness in the viscosity of solutions of nonlinear differential equations in a {Banach} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {99--103}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/} }
TY - JOUR AU - V. I. Kachalov TI - Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 99 EP - 103 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/ LA - ru ID - INTO_2021_193_a9 ER -
%0 Journal Article %A V. I. Kachalov %T Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 99-103 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/ %G ru %F INTO_2021_193_a9
V. I. Kachalov. Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 99-103. http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh zadach, Nauka, M., 1973
[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[3] Kachalov V. I., “O golomorfnoi regulyarizatsii singulyarno vozmuschennykh sistem differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 57:4 (2017), 64–71
[4] Kachalov V. I., Fedorov Yu. S., “O metode malogo parametra v nelineinoi matematicheskoi fizike”, Sib. elektron. mat. izv., 15 (2018), 1680–1686 | MR | Zbl
[5] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[6] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981
[7] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011
[8] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, v. II, Mir, M., 1984 | MR