Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 99-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical properties of solutions of differential equations with a small parameter form the basis of analytical perturbation theory. In the case of a regular theory, Poincaré's decomposition theorems or statements that follow from the concept of an analytic family in the sense of Kato hold. For singularly perturbed problems, the approach based on S. A. Lomov's regularization method is useful; the central concept of this method is the concept of a pseudoanalytic (pseudoholomorphic) solution, i.e., a solution, which can be represented in the form of a series converging in the usual sense in powers of a small parameter.
Keywords: Navier–Stokes-type equation, pseudoholomorphic solution, monotone system of norms.
@article{INTO_2021_193_a9,
     author = {V. I. Kachalov},
     title = {Smoothness in the viscosity of solutions of nonlinear differential equations in a {Banach} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {99--103},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/}
}
TY  - JOUR
AU  - V. I. Kachalov
TI  - Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 99
EP  - 103
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/
LA  - ru
ID  - INTO_2021_193_a9
ER  - 
%0 Journal Article
%A V. I. Kachalov
%T Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 99-103
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/
%G ru
%F INTO_2021_193_a9
V. I. Kachalov. Smoothness in the viscosity of solutions of nonlinear differential equations in a Banach space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 99-103. http://geodesic.mathdoc.fr/item/INTO_2021_193_a9/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh zadach, Nauka, M., 1973

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[3] Kachalov V. I., “O golomorfnoi regulyarizatsii singulyarno vozmuschennykh sistem differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 57:4 (2017), 64–71

[4] Kachalov V. I., Fedorov Yu. S., “O metode malogo parametra v nelineinoi matematicheskoi fizike”, Sib. elektron. mat. izv., 15 (2018), 1680–1686 | MR | Zbl

[5] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[6] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981

[7] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011

[8] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, v. II, Mir, M., 1984 | MR