Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a8, author = {S. S. Ezhak and M. Yu. Telnova}, title = {On the first eigenvalue of the {Sturm--Liouville} problem with a weighted integral condition on the potential}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {87--98}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a8/} }
TY - JOUR AU - S. S. Ezhak AU - M. Yu. Telnova TI - On the first eigenvalue of the Sturm--Liouville problem with a weighted integral condition on the potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 87 EP - 98 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a8/ LA - ru ID - INTO_2021_193_a8 ER -
%0 Journal Article %A S. S. Ezhak %A M. Yu. Telnova %T On the first eigenvalue of the Sturm--Liouville problem with a weighted integral condition on the potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 87-98 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a8/ %G ru %F INTO_2021_193_a8
S. S. Ezhak; M. Yu. Telnova. On the first eigenvalue of the Sturm--Liouville problem with a weighted integral condition on the potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 87-98. http://geodesic.mathdoc.fr/item/INTO_2021_193_a8/
[1] Vinokurov V. A., Sadovnichii V. A., “O granitsakh izmeneniya sobstvennogo znacheniya pri izmenenii potentsiala”, Dokl. RAN., 392:5 (2003), 592–597 | MR | Zbl
[2] A. A. Vladimirov, “O mazhorantakh sobstvennykh znachenii zadach Shturma–Liuvillya s potentsialami iz sharov vesovykh prostranstv”, Mat. sb., 208:9 (2017), 42–55 | MR | Zbl
[3] Egorov Yu. V., Kondratev V. A., “Ob otsenkakh pervogo sobstvennogo znacheniya v nekotorykh zadachakh Shturma—Liuvillya”, Usp. mat. nauk., 51:3 (1996), 73–144 | MR | Zbl
[4] Ezhak S. S., Karulina E. S., Telnova M. Yu., “Otsenki pervogo sobstvennogo znacheniya nekotorykh zadach Shturma—Liuvillya s integralnym usloviem na potentsial. Ch. 4”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, ed. Astashova I. V., YuNITI–DANA, M., 2012, 506–647
[5] Ezhak S. S., Telnova M. Yu., “Ob otsenkakh pervogo sobstvennogo znacheniya zadachi Shturma—Liuvillya s potentsialami iz vesovykh prostranstv”, Tr. semin. im. I. G. Petrovskogo., 32 (2019), 162–190
[6] Kuralbaeva K. Z., Nekotorye optimalnye otsenki sobstvennykh znachenii zadach Shturma–Liuvillya, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, 1996
[7] Kuralbaeva K. Z., “Ob otsenkakh pervogo sobstvennogo znacheniya operatora Shturma—Liuvillya”, Differ. uravn., 32:6 (1996), 852–853
[8] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[9] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977
[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[11] Osmolovskii V. G., Nelineinaya zadacha Shturma—Liuvillya, Izd-vo SPbGU, SPb., 2003
[12] Egorov Yu., Kondratiev V., Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996 | MR | Zbl
[13] Ezhak S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, Springer-Verlag, New York, 2013, 387–394 | DOI | MR | Zbl
[14] Ezhak S. S., Telnova M. Yu., “On one upper estimate for the first eigenvalue of a Sturm–Liouville problem with Dirichlet boundary conditions and a weighted integral condition”, Mem. Differ. Equations Math. Phys., 73 (2018), 55–64 | MR | Zbl
[15] Karulina E., “Some estimates for the minimal eigenvalue of the Sturm–Liouville problem with third-type boundary conditions”, Math. Bohem., 136:4 (2011), 377–384 | DOI | MR | Zbl
[16] Karulina E. S., Vladimirov A. A., “The Sturm–Liouville problem with singular potential and the extrema of the first eigenvalue”, Tatra Mount. Math. Publ., 54:1 (2013), 101–118 | MR | Zbl
[17] Telnova M., “Some estimates for the first eigenvalue of the Sturm–Liouville problem with a weight integral condition”, Math. Bohem., 137:2 (2012), 229–238 | DOI | MR | Zbl