On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 69-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A local Hilbert–Schmidt operator is an operator of the form \begin{equation*} (Tx)(t)=\int\limits_{-\infty}^{+\infty}k(t,s)x(s)ds \end{equation*} with a measurable kernel $k:\mathbb{R}^2\to\mathbb{C}$ under the condition that \begin{equation*} \int\limits_a^{b}\int\limits_a^{b}|k(t,s)|^2 ds dt\infty \end{equation*} for all $-\infty$. We prove that, under some additional conditions that provide the action of the operator $T$ in $L_2(\mathbb{R},\mathbb{C})$, the invertibility of the operator $\mathbf{1}+T$ implies that the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local Hilbert–Schmidt operator whose kernel $S$ satisfies the same conditions.
Keywords: Hilbert–Schmidt operator, full subalgebra, difference operator, convolution operator, operator majorized by a convolution.
@article{INTO_2021_193_a7,
     author = {E. Yu. Guseva},
     title = {On the inverse closedness of the subalgebra of local {Hilbert--Schmidt} operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--86},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/}
}
TY  - JOUR
AU  - E. Yu. Guseva
TI  - On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 69
EP  - 86
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/
LA  - ru
ID  - INTO_2021_193_a7
ER  - 
%0 Journal Article
%A E. Yu. Guseva
%T On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 69-86
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/
%G ru
%F INTO_2021_193_a7
E. Yu. Guseva. On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 69-86. http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/