Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a7, author = {E. Yu. Guseva}, title = {On the inverse closedness of the subalgebra of local {Hilbert--Schmidt} operators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--86}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/} }
TY - JOUR AU - E. Yu. Guseva TI - On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 69 EP - 86 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/ LA - ru ID - INTO_2021_193_a7 ER -
%0 Journal Article %A E. Yu. Guseva %T On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 69-86 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/ %G ru %F INTO_2021_193_a7
E. Yu. Guseva. On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 69-86. http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/
[1] Baskakov A. G., “Teorema Vinera i asimptoticheskie otsenki elementov obratnykh matrits”, Funkts. anal. prilozh., 24:3 (1990), 64–65 | MR | Zbl
[2] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zh., 38:1 (1997), 14–28 | MR | Zbl
[3] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovr. mat. Fundam. napr., 9 (2004), 3–151 | Zbl
[4] Blatov I. A., Algebra obobschennoi diskretnoi svertki operatorov s ostsilliruyuschimi koeffitsientami, Dep. v VINITI AN SSSR, No 5852-B90
[5] Blatov I. A., “Ob otsenkakh elementov obratnykh matrits i modernizatsii metoda matrichnoi progonki”, Sib. mat. zh., 32:2 (1992), 10–21 | MR
[6] Blatov I. A., “O metodakh nepolnoi faktorizatsii dlya sistem s razrezhennymi matritsami”, Zh. vychisl. mat. mat. fiz., 33:6 (1993), 819–836 | MR | Zbl
[7] Burbaki N., Algebra {I}. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, GIFML, M., 1962
[8] Burbaki N., Spektralnaya teoriya, Mir, M., 1972
[9] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, GIFML, M., 1960 | MR
[10] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968
[11] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezh. un-ta, Voronezh, 1990
[12] Kurbatov V. G., “Ob algebrakh raznostnykh i integralnykh operatorov”, Funkts. anal. prilozh., 24:2 (1990), 87–88 | MR | Zbl
[13] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[14] Moren K., Metody gilbertova prostranstva, Mir, M., 1965
[15] Rudin U., Funktsionalnyi analiz, Mir, M., 1975
[16] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989
[17] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004
[18] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[19] Belti{ţă} I., Belti{ţă} D., “Erratum to: {I}nverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1307–1309 | DOI | MR
[20] Belti{ţă} I., Belti{ţă} D., “{I}nverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1283––1306 | DOI | MR | Zbl
[21] Bochner S., Phillips R. S., “Absolutely convergent {F}ourier expansions for non-commutative normed rings”, Ann. Math. (2)., 43 (1942), 409–418 | DOI | MR | Zbl
[22] Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland, Amsterdam–London–New York, 1993 | MR | Zbl
[23] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl
[24] Demko S., “Spectral bounds for {$\|A^{-1}\|_\infty$}”, J. Approx. Theory, 48:2 (1986), 207–212 | DOI | MR | Zbl
[25] Demko S., Moss W. F., Smith Ph. W., “Decay rates for inverses of band matrices”, Math. Comp., 43:168 (1984), 491–499 | DOI | MR | Zbl
[26] Farrell B., Strohmer Th., “Inverse-closedness of a {B}anach algebra of integral operators on the {H}eisenberg group”, J. Oper. Theory., 64:1 (2010), 189–205 | MR | Zbl
[27] Fendler G., Gröchenig K., Leinert M., “Convolution-dominated operators on discrete groups”, Integral Equations Operator Theory., 61:4 (2008), 493–509 | DOI | MR | Zbl
[28] Fournier J. J. F., Stewart J., “Amalgams of {$L^p$} and {$l^q$}”, Bull. Am. Math. Soc. (N.S.)., 13:1 (1985), 1–21 | DOI | MR | Zbl
[29] Gohberg I., Kaashoek M. A., Woerdeman H. J., “The band method for positive and strictly contractive extension problems: an alternative version and new applications”, Integral Equations Operator Theory., 12:3 (1989), 343–382 | DOI | MR | Zbl
[30] Gröchenig K., “Wiener's lemma: theme and variations. {A}n introduction to spectral invariance”, Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, Birkhäuser, Boston–Basel–Berlin, 2010, 175–244 | Zbl
[31] Gröchenig K., Klotz A., “Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices”, Constr. Approx., 32:3 (2010), 429–466 | DOI | MR | Zbl
[32] Gröchenig K., Leinert M., “Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices”, Trans. Am. Math. Soc., 358:6 (2006), 2695–2711 | DOI | MR | Zbl
[33] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Am. Math. Soc., Providence, Rhode Island, 1966 | MR
[34] Guseva E. Yu., Kurbatov V. G., Inverse-closedness of subalgebras of integral operators with almost periodic kernels, arXiv: 1810.02682 [math.FA] | MR
[35] Jaffard S., “Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications”, Ann. Inst. H. Poincaré. Anal. Non Linéaire., 7:5 (1990), 461–476 | DOI | MR | Zbl
[36] Kurbatov V. G., Functional differential operators and equations, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[37] Kurbatov V. G., “Some algebras of operators majorized by a convolution”, Funct. Differ. Equations., 8:1 (2001), 323–333 | MR | Zbl
[38] Kurbatov V. G., Kuznetsova V. I., “Inverse-closedness of the set of integral operators with ${L}_1$-continuously varying kernels”, J. Math. Anal. Appl., 436:1 (2016), 322–338 | DOI | MR | Zbl
[39] Schatten R., A Theory of Cross-Spaces, Princeton Univ. Press, Princeton, New Jersey, 1950 | MR | Zbl
[40] Schatten R. A., Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl
[41] Sjöstrand J., Wiener-Type Algebras of Pseudodifferential Operators, École Polytech., Palaiseau, 1994–1995