On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 69-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A local Hilbert–Schmidt operator is an operator of the form \begin{equation*} (Tx)(t)=\int\limits_{-\infty}^{+\infty}k(t,s)x(s)ds \end{equation*} with a measurable kernel $k:\mathbb{R}^2\to\mathbb{C}$ under the condition that \begin{equation*} \int\limits_a^{b}\int\limits_a^{b}|k(t,s)|^2 ds dt\infty \end{equation*} for all $-\infty$. We prove that, under some additional conditions that provide the action of the operator $T$ in $L_2(\mathbb{R},\mathbb{C})$, the invertibility of the operator $\mathbf{1}+T$ implies that the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local Hilbert–Schmidt operator whose kernel $S$ satisfies the same conditions.
Keywords: Hilbert–Schmidt operator, full subalgebra, difference operator, convolution operator, operator majorized by a convolution.
@article{INTO_2021_193_a7,
     author = {E. Yu. Guseva},
     title = {On the inverse closedness of the subalgebra of local {Hilbert--Schmidt} operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--86},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/}
}
TY  - JOUR
AU  - E. Yu. Guseva
TI  - On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 69
EP  - 86
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/
LA  - ru
ID  - INTO_2021_193_a7
ER  - 
%0 Journal Article
%A E. Yu. Guseva
%T On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 69-86
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/
%G ru
%F INTO_2021_193_a7
E. Yu. Guseva. On the inverse closedness of the subalgebra of local Hilbert--Schmidt operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 69-86. http://geodesic.mathdoc.fr/item/INTO_2021_193_a7/

[1] Baskakov A. G., “Teorema Vinera i asimptoticheskie otsenki elementov obratnykh matrits”, Funkts. anal. prilozh., 24:3 (1990), 64–65 | MR | Zbl

[2] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zh., 38:1 (1997), 14–28 | MR | Zbl

[3] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovr. mat. Fundam. napr., 9 (2004), 3–151 | Zbl

[4] Blatov I. A., Algebra obobschennoi diskretnoi svertki operatorov s ostsilliruyuschimi koeffitsientami, Dep. v VINITI AN SSSR, No 5852-B90

[5] Blatov I. A., “Ob otsenkakh elementov obratnykh matrits i modernizatsii metoda matrichnoi progonki”, Sib. mat. zh., 32:2 (1992), 10–21 | MR

[6] Blatov I. A., “O metodakh nepolnoi faktorizatsii dlya sistem s razrezhennymi matritsami”, Zh. vychisl. mat. mat. fiz., 33:6 (1993), 819–836 | MR | Zbl

[7] Burbaki N., Algebra {I}. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, GIFML, M., 1962

[8] Burbaki N., Spektralnaya teoriya, Mir, M., 1972

[9] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, GIFML, M., 1960 | MR

[10] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968

[11] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezh. un-ta, Voronezh, 1990

[12] Kurbatov V. G., “Ob algebrakh raznostnykh i integralnykh operatorov”, Funkts. anal. prilozh., 24:2 (1990), 87–88 | MR | Zbl

[13] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[14] Moren K., Metody gilbertova prostranstva, Mir, M., 1965

[15] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[16] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989

[17] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[18] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[19] Belti{ţă} I., Belti{ţă} D., “Erratum to: {I}nverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1307–1309 | DOI | MR

[20] Belti{ţă} I., Belti{ţă} D., “{I}nverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1283––1306 | DOI | MR | Zbl

[21] Bochner S., Phillips R. S., “Absolutely convergent {F}ourier expansions for non-commutative normed rings”, Ann. Math. (2)., 43 (1942), 409–418 | DOI | MR | Zbl

[22] Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland, Amsterdam–London–New York, 1993 | MR | Zbl

[23] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl

[24] Demko S., “Spectral bounds for {$\|A^{-1}\|_\infty$}”, J. Approx. Theory, 48:2 (1986), 207–212 | DOI | MR | Zbl

[25] Demko S., Moss W. F., Smith Ph. W., “Decay rates for inverses of band matrices”, Math. Comp., 43:168 (1984), 491–499 | DOI | MR | Zbl

[26] Farrell B., Strohmer Th., “Inverse-closedness of a {B}anach algebra of integral operators on the {H}eisenberg group”, J. Oper. Theory., 64:1 (2010), 189–205 | MR | Zbl

[27] Fendler G., Gröchenig K., Leinert M., “Convolution-dominated operators on discrete groups”, Integral Equations Operator Theory., 61:4 (2008), 493–509 | DOI | MR | Zbl

[28] Fournier J. J. F., Stewart J., “Amalgams of {$L^p$} and {$l^q$}”, Bull. Am. Math. Soc. (N.S.)., 13:1 (1985), 1–21 | DOI | MR | Zbl

[29] Gohberg I., Kaashoek M. A., Woerdeman H. J., “The band method for positive and strictly contractive extension problems: an alternative version and new applications”, Integral Equations Operator Theory., 12:3 (1989), 343–382 | DOI | MR | Zbl

[30] Gröchenig K., “Wiener's lemma: theme and variations. {A}n introduction to spectral invariance”, Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, Birkhäuser, Boston–Basel–Berlin, 2010, 175–244 | Zbl

[31] Gröchenig K., Klotz A., “Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices”, Constr. Approx., 32:3 (2010), 429–466 | DOI | MR | Zbl

[32] Gröchenig K., Leinert M., “Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices”, Trans. Am. Math. Soc., 358:6 (2006), 2695–2711 | DOI | MR | Zbl

[33] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Am. Math. Soc., Providence, Rhode Island, 1966 | MR

[34] Guseva E. Yu., Kurbatov V. G., Inverse-closedness of subalgebras of integral operators with almost periodic kernels, arXiv: 1810.02682 [math.FA] | MR

[35] Jaffard S., “Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications”, Ann. Inst. H. Poincaré. Anal. Non Linéaire., 7:5 (1990), 461–476 | DOI | MR | Zbl

[36] Kurbatov V. G., Functional differential operators and equations, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[37] Kurbatov V. G., “Some algebras of operators majorized by a convolution”, Funct. Differ. Equations., 8:1 (2001), 323–333 | MR | Zbl

[38] Kurbatov V. G., Kuznetsova V. I., “Inverse-closedness of the set of integral operators with ${L}_1$-continuously varying kernels”, J. Math. Anal. Appl., 436:1 (2016), 322–338 | DOI | MR | Zbl

[39] Schatten R., A Theory of Cross-Spaces, Princeton Univ. Press, Princeton, New Jersey, 1950 | MR | Zbl

[40] Schatten R. A., Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl

[41] Sjöstrand J., Wiener-Type Algebras of Pseudodifferential Operators, École Polytech., Palaiseau, 1994–1995