Enumeration of labeled nonplanar pentacyclic blocks
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 28-32
Voir la notice de l'article provenant de la source Math-Net.Ru
An planar graph is a graph that can be drawn on a plane without intersecting edges. A pentacyclic graph is a connected graph with $n$ vertices and $n + 4$ edges. We obtain an explicit formula for the number of labeled nonplanar pentacyclic blocks with a given number of vertices and found the corresponding asymptotics for the number of such graphs with a large number of vertices. We prove that under the uniform probability distribution, the probability that the labeled pentacyclic block is a nonplanar graph is asymptotically equal to $80/539$.
Keywords:
enumeration, labeled graph, block, planar graph, asymptotics, probability.
@article{INTO_2021_193_a4,
author = {V. A. Voblyi},
title = {Enumeration of labeled nonplanar pentacyclic blocks},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {28--32},
publisher = {mathdoc},
volume = {193},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a4/}
}
TY - JOUR AU - V. A. Voblyi TI - Enumeration of labeled nonplanar pentacyclic blocks JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 28 EP - 32 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a4/ LA - ru ID - INTO_2021_193_a4 ER -
V. A. Voblyi. Enumeration of labeled nonplanar pentacyclic blocks. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 28-32. http://geodesic.mathdoc.fr/item/INTO_2021_193_a4/