Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 110-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for the approximate solution of the generalized Riemann problem on the discontinuity of a decay under additional conditions on the boundaries. This algorithm reduces the problem of finding values of variables on both sides of the discontinuity surface of the initial data to solving a system of algebraic equations whose right-hand sides depend on the values of the variables at the initial moment of time at a finite number of points. Based on these solutions, we develop a computational algorithm for the approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; moreover, we use it to solve some applied problems related to oil production.
Keywords: decay of a discontinuity, hyperbolic system, generalized function, Cauchy problem, matrix Green function, characteristic, equations of elastic dynamics.
Mots-clés : conjugation conditions, Riemann invariant
@article{INTO_2021_193_a11,
     author = {Yu. I. Skalko and S. Yu. Gridnev},
     title = {Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {110--121},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/}
}
TY  - JOUR
AU  - Yu. I. Skalko
AU  - S. Yu. Gridnev
TI  - Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 110
EP  - 121
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/
LA  - ru
ID  - INTO_2021_193_a11
ER  - 
%0 Journal Article
%A Yu. I. Skalko
%A S. Yu. Gridnev
%T Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 110-121
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/
%G ru
%F INTO_2021_193_a11
Yu. I. Skalko; S. Yu. Gridnev. Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 110-121. http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[2] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, GIFML, M., 1958

[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, GIFML, M., 1959

[4] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, GIFML, M., 1958 | MR

[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[6] Skalko Yu. I., “Zadacha Rimana o raspade razryva v sluchae mnogikh prostranstvennykh peremennykh”, Tr. MFTI., 8:4 (2016), 169–182

[7] Skalko Yu. I., “Korrektnye usloviya na granitse, razdelyayuschei podoblasti”, Kompyut. issl. model., 6:3 (2014), 347–356

[8] LeVeque R. L., Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[9] Kaser M., Dumbser M., “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source terms”, Geophys. J. Int., 166 (2006), 855–877 | DOI