Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a11, author = {Yu. I. Skalko and S. Yu. Gridnev}, title = {Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {110--121}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/} }
TY - JOUR AU - Yu. I. Skalko AU - S. Yu. Gridnev TI - Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 110 EP - 121 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/ LA - ru ID - INTO_2021_193_a11 ER -
%0 Journal Article %A Yu. I. Skalko %A S. Yu. Gridnev %T Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 110-121 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/ %G ru %F INTO_2021_193_a11
Yu. I. Skalko; S. Yu. Gridnev. Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 110-121. http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/
[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[2] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, GIFML, M., 1958
[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, GIFML, M., 1959
[4] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, GIFML, M., 1958 | MR
[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[6] Skalko Yu. I., “Zadacha Rimana o raspade razryva v sluchae mnogikh prostranstvennykh peremennykh”, Tr. MFTI., 8:4 (2016), 169–182
[7] Skalko Yu. I., “Korrektnye usloviya na granitse, razdelyayuschei podoblasti”, Kompyut. issl. model., 6:3 (2014), 347–356
[8] LeVeque R. L., Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[9] Kaser M., Dumbser M., “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source terms”, Geophys. J. Int., 166 (2006), 855–877 | DOI