Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 110-121
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients.
We propose an algorithm for the approximate solution of the generalized Riemann problem on the discontinuity of a decay under additional conditions on the boundaries.
This algorithm reduces the problem of finding values of variables on both sides of the discontinuity surface of the initial data to solving a system of algebraic equations whose right-hand sides depend on the values of the variables at the initial moment of time at a finite number of points.
Based on these solutions, we develop a computational algorithm for the approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; moreover, we use it to solve some applied problems related to oil production.
Keywords:
decay of a discontinuity, hyperbolic system, generalized function, Cauchy problem, matrix Green function, characteristic, equations of elastic dynamics.
Mots-clés : conjugation conditions, Riemann invariant
Mots-clés : conjugation conditions, Riemann invariant
@article{INTO_2021_193_a11,
author = {Yu. I. Skalko and S. Yu. Gridnev},
title = {Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {110--121},
publisher = {mathdoc},
volume = {193},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/}
}
TY - JOUR AU - Yu. I. Skalko AU - S. Yu. Gridnev TI - Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 110 EP - 121 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/ LA - ru ID - INTO_2021_193_a11 ER -
%0 Journal Article %A Yu. I. Skalko %A S. Yu. Gridnev %T Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 110-121 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/ %G ru %F INTO_2021_193_a11
Yu. I. Skalko; S. Yu. Gridnev. Fundamental solution of an operator and its application for the approximate solution of initial-boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 110-121. http://geodesic.mathdoc.fr/item/INTO_2021_193_a11/