On the solution of the heat-conduction problem in a multilayer medium with phase transitions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the stationary problem of heat conduction is solved for the case of a multilayer medium consisting of two materials. In the problem considered, the heat sources are located in a layer in which phase transitions cannot occur, and the neighboring layer is heated only due to thermal conductivity and a phase transition is possible in it. To solve the problem of heat conduction and to determine the coordinates of the points of phase transition, the matrix method is used together with the techniques of generalized Bers degrees. The temperature field is constructed for multilayer media with various types of symmetry, when a phase transition has occurred in some layer.
Keywords: mathematical model, matrix method, heat-conduction equation, multilayer medium
Mots-clés : phase transition.
@article{INTO_2021_192_a4,
     author = {Yu. A. Gladyshev and V. V. Kalmanovich},
     title = {On the solution of the heat-conduction problem in a multilayer medium with phase transitions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
AU  - V. V. Kalmanovich
TI  - On the solution of the heat-conduction problem in a multilayer medium with phase transitions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 46
EP  - 54
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/
LA  - ru
ID  - INTO_2021_192_a4
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%A V. V. Kalmanovich
%T On the solution of the heat-conduction problem in a multilayer medium with phase transitions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 46-54
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/
%G ru
%F INTO_2021_192_a4
Yu. A. Gladyshev; V. V. Kalmanovich. On the solution of the heat-conduction problem in a multilayer medium with phase transitions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/

[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011

[2] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomn. nauki i tekhn. Ser. Yaderno-reaktornye konstanty., 3 (2018), 158–167

[3] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, v. III, IPPM RAN, M., 2018, 194–201

[4] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964

[5] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 2001

[6] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005

[7] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967

[8] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93

[9] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “On the possibility of applying the Bers apparatus to modeling the processes of heat and mass transfer caused by electrons in a planar multilayer medium”, J. Surface Invest. X-Ray, Synch. Neutr. Techniques, 11:5 (2017), 1096–1100

[10] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “Mass transfer problem with the combined matrix and generalized powers of the Bers method”, J. Phys. Conf. Ser., 1163 (2019), 012012