Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a4, author = {Yu. A. Gladyshev and V. V. Kalmanovich}, title = {On the solution of the heat-conduction problem in a multilayer medium with phase transitions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--54}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/} }
TY - JOUR AU - Yu. A. Gladyshev AU - V. V. Kalmanovich TI - On the solution of the heat-conduction problem in a multilayer medium with phase transitions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 46 EP - 54 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/ LA - ru ID - INTO_2021_192_a4 ER -
%0 Journal Article %A Yu. A. Gladyshev %A V. V. Kalmanovich %T On the solution of the heat-conduction problem in a multilayer medium with phase transitions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 46-54 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/ %G ru %F INTO_2021_192_a4
Yu. A. Gladyshev; V. V. Kalmanovich. On the solution of the heat-conduction problem in a multilayer medium with phase transitions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 46-54. http://geodesic.mathdoc.fr/item/INTO_2021_192_a4/
[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011
[2] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomn. nauki i tekhn. Ser. Yaderno-reaktornye konstanty., 3 (2018), 158–167
[3] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, v. III, IPPM RAN, M., 2018, 194–201
[4] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964
[5] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 2001
[6] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005
[7] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967
[8] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93
[9] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “On the possibility of applying the Bers apparatus to modeling the processes of heat and mass transfer caused by electrons in a planar multilayer medium”, J. Surface Invest. X-Ray, Synch. Neutr. Techniques, 11:5 (2017), 1096–1100
[10] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “Mass transfer problem with the combined matrix and generalized powers of the Bers method”, J. Phys. Conf. Ser., 1163 (2019), 012012