Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a3, author = {M. N. Afanaseva and E. B. Kuznetsov}, title = {The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {38--45}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a3/} }
TY - JOUR AU - M. N. Afanaseva AU - E. B. Kuznetsov TI - The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 38 EP - 45 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a3/ LA - ru ID - INTO_2021_192_a3 ER -
%0 Journal Article %A M. N. Afanaseva %A E. B. Kuznetsov %T The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 38-45 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a3/ %G ru %F INTO_2021_192_a3
M. N. Afanaseva; E. B. Kuznetsov. The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 38-45. http://geodesic.mathdoc.fr/item/INTO_2021_192_a3/
[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987
[2] Budkina E. M., Kuznetsov E. B., “Chislennoe reshenie kraevykh zadach dlya sistem integrodifferentsialno-algebraicheskikh uravnenii”, Mat. XI Mezhdunar. konf. po neravnovesnym protsessam v soplakh i struyakh (NPNJ'2016) (Alushta, 25-31 maya 2016 g.), Izd-vo MAI, M., 2016, 417–419
[3] Budkina E. M., Kuznetsov E. B., “Modelirovanie tekhnologicheskogo protsessa proizvodstva uzlov letatelnykh apparatov na osnove nailuchshei parametrizatsii kraevoi zadachi dlya nelineinykh differentsialno-algebraicheskikh uravnenii”, Vestn. MAI., 23:1 (2016), 189–196
[4] Dmitriev S. S., Kuznetsov E. B., “Chislennoe reshenie sistem integrodifferentsialno-algebraicheskikh uravnenii s zapazdyvayuschim argumentom”, Zh. vychisl. mat. mat. fiz., 48:3 (2008), 430–444
[5] Kamenskii G. A., Skubachevskiii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, Izd-vo MAI, M., 1992
[6] Krasnikov C. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 45:12 (2005), 2148–2158
[7] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. mat. mat. fiz., 44:9 (2004), 1540–1551
[8] Samoilenko A. M., Ronto N. I., Chislenno-analiticheskie metody issledovaniya reshenii kraevykh zadach, Naukova Dumka, Kiev, 1986
[9] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999
[10] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, C. R. Hebdomat. Seances Acad. Sci., 198:21 (1934), 1840–1842