Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a2, author = {S. N. Askhabov}, title = {Gradient method for solving nonlinear discrete and integral equations with difference kernels}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {26--37}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/} }
TY - JOUR AU - S. N. Askhabov TI - Gradient method for solving nonlinear discrete and integral equations with difference kernels JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 26 EP - 37 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/ LA - ru ID - INTO_2021_192_a2 ER -
%0 Journal Article %A S. N. Askhabov %T Gradient method for solving nonlinear discrete and integral equations with difference kernels %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 26-37 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/ %G ru %F INTO_2021_192_a2
S. N. Askhabov. Gradient method for solving nonlinear discrete and integral equations with difference kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 26-37. http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/
[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009
[2010] Askhabov S. N., “Priblizhennoe reshenie nelineinykh diskretnykh uravnenii tipa svertki”, Sovr. mat. Fundam. napr., 45 (2012), 18–31
[2011] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki., 97:5 (2015), 643–654
[2012] Askhabov S. N., “Nelineinye integralnye uravneniya s yadrami tipa potentsiala na otrezke”, Sovr. mat. Fundam. napr., 60 (2016), 5–22
[2013] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovr. mat. i ee pril. Temat. obz., 149 (2018), 3–13
[2014] Askhabov S. N., Dzhabrailov A. L., “Priblizhennoe reshenie nelineinykh uravnenii tipa svertki na otrezke”, Ufim. mat. zh., 5:2 (2013), 3–11
[2015] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972
[2016] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[2017] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978
[2018] Dedagich F., Zabreiko P. P., “Ob operatorakh superpozitsii v prostranstvakh $l_p$”, Sib. mat. zh., 28:1 (1987), 86-–98
[2019] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[2020] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985
[2021] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 2, Mir, M., 1985
[2022] Dedagic F., Halilovic S., Barakovic E., “On the solvability of discrete nonlinear Hammerstein systems in spaces”, Math. Balkan. New Ser., 26:3-–4 (2012), 325-–333