Gradient method for solving nonlinear discrete and integral equations with difference kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of potential monotonic operators (called also the Browder–Minty method) is used to prove global theorems on the existence and uniqueness of solutions for discrete and integral equations with difference kernels and odd-power nonlinearities. Using the gradient method (or the steepest descent method), we construct successive approximations that converge to the solutions mentioned with respect to the norm.
Keywords: monotonic operator, potential operator, nonlinear discrete equation, nonlinear integral equation.
@article{INTO_2021_192_a2,
     author = {S. N. Askhabov},
     title = {Gradient method for solving nonlinear discrete and integral equations with difference kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Gradient method for solving nonlinear discrete and integral equations with difference kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 26
EP  - 37
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/
LA  - ru
ID  - INTO_2021_192_a2
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Gradient method for solving nonlinear discrete and integral equations with difference kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 26-37
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/
%G ru
%F INTO_2021_192_a2
S. N. Askhabov. Gradient method for solving nonlinear discrete and integral equations with difference kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 26-37. http://geodesic.mathdoc.fr/item/INTO_2021_192_a2/

[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009

[2010] Askhabov S. N., “Priblizhennoe reshenie nelineinykh diskretnykh uravnenii tipa svertki”, Sovr. mat. Fundam. napr., 45 (2012), 18–31

[2011] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki., 97:5 (2015), 643–654

[2012] Askhabov S. N., “Nelineinye integralnye uravneniya s yadrami tipa potentsiala na otrezke”, Sovr. mat. Fundam. napr., 60 (2016), 5–22

[2013] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovr. mat. i ee pril. Temat. obz., 149 (2018), 3–13

[2014] Askhabov S. N., Dzhabrailov A. L., “Priblizhennoe reshenie nelineinykh uravnenii tipa svertki na otrezke”, Ufim. mat. zh., 5:2 (2013), 3–11

[2015] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972

[2016] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[2017] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978

[2018] Dedagich F., Zabreiko P. P., “Ob operatorakh superpozitsii v prostranstvakh $l_p$”, Sib. mat. zh., 28:1 (1987), 86-–98

[2019] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2020] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985

[2021] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 2, Mir, M., 1985

[2022] Dedagic F., Halilovic S., Barakovic E., “On the solvability of discrete nonlinear Hammerstein systems in spaces”, Math. Balkan. New Ser., 26:3-–4 (2012), 325-–333