On the asymptotic properties of solutions of the iterated heat equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 155-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that stabilization theorems are valid for a certain class of solutions of the iterated heat equation.
Keywords: heat equation, iterated solution, asymptotic property.
@article{INTO_2021_192_a17,
     author = {P. V. Denisov},
     title = {On the asymptotic properties of solutions of the iterated heat equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a17/}
}
TY  - JOUR
AU  - P. V. Denisov
TI  - On the asymptotic properties of solutions of the iterated heat equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 155
EP  - 160
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a17/
LA  - ru
ID  - INTO_2021_192_a17
ER  - 
%0 Journal Article
%A P. V. Denisov
%T On the asymptotic properties of solutions of the iterated heat equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 155-160
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a17/
%G ru
%F INTO_2021_192_a17
P. V. Denisov. On the asymptotic properties of solutions of the iterated heat equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 155-160. http://geodesic.mathdoc.fr/item/INTO_2021_192_a17/

[3] Denisov V. N., Repnikov V. D., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Differ. uravn., 20:1 (1984), 20–41

[4] Denisov V. N., Shelepova E. V., “O skorosti stabilizatsii parabolicheskogo uravneniya”, Probl. mat. anal., 103 (2020), 85–90

[5] Nicolescu M., “Ecuatia iterata a caldurii”, Stud. Cerc. Mat., 5:3-4 (1954), 243–332

[6] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Mat. sb., 42:2 (1935), 199–216