On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Lebesgue function corresponding to the Lagrange interpolation polynomial, strict lower and upper estimates are obtained and the well-known asymptotic formula is refined.
Mots-clés : Lagrange polynomial, Lebesgue function
Keywords: asymptotic formula, uniform remainder estimate.
@article{INTO_2021_192_a15,
     author = {I. A. Shakirov},
     title = {On the refinement of the asymptotic formula for the {Lebesgue} function of the {Lagrange} polynomial},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 142
EP  - 149
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/
LA  - ru
ID  - INTO_2021_192_a15
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 142-149
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/
%G ru
%F INTO_2021_192_a15
I. A. Shakirov. On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149. http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/