On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Lebesgue function corresponding to the Lagrange interpolation polynomial, strict lower and upper estimates are obtained and the well-known asymptotic formula is refined.
Mots-clés :
Lagrange polynomial, Lebesgue function
Keywords: asymptotic formula, uniform remainder estimate.
Keywords: asymptotic formula, uniform remainder estimate.
@article{INTO_2021_192_a15,
author = {I. A. Shakirov},
title = {On the refinement of the asymptotic formula for the {Lebesgue} function of the {Lagrange} polynomial},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {142--149},
publisher = {mathdoc},
volume = {192},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/}
}
TY - JOUR AU - I. A. Shakirov TI - On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 142 EP - 149 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/ LA - ru ID - INTO_2021_192_a15 ER -
%0 Journal Article %A I. A. Shakirov %T On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 142-149 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/ %G ru %F INTO_2021_192_a15
I. A. Shakirov. On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149. http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/