Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a15, author = {I. A. Shakirov}, title = {On the refinement of the asymptotic formula for the {Lebesgue} function of the {Lagrange} polynomial}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {142--149}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/} }
TY - JOUR AU - I. A. Shakirov TI - On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 142 EP - 149 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/ LA - ru ID - INTO_2021_192_a15 ER -
%0 Journal Article %A I. A. Shakirov %T On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 142-149 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/ %G ru %F INTO_2021_192_a15
I. A. Shakirov. On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149. http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/
[5] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Naukova dumka, Kiev, 1988
[6] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965
[7] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976
[8] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.-L., 1949
[9] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, 2, Izd-vo Saratov. un-ta, Saratov, 1990
[10] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[11] Shakirov I. A., “O trigonometricheskom interpolyatsionnom polinome Lagranzha, imeyuschem minimalnuyu normu kak operator iz v”, Izv. vuzov. Mat., 10 (2010), 60–68
[12] Shakirov I. A., “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam”, Izv. vuzov. Mat., 10 (2011), 80–88
[13] Shakirov I. A., “O funktsiyakh Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Izv. vuzov. Mat., 7 (2013), 77–89
[14] Shakirov I. A., “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. mat. zh., 55:6 (2014), 1404–1423
[15] Shakirov I. A., “Asimptoticheskie formuly dlya funktsii Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Mat. zametki., 102:1 (2017), 133–147
[16] Brutman L., “Lebesgue functions for polynomial interpolation. A survey”, Ann. Numer. Math., 4 (1997), 111–127
[17] Rivlin T., “The Lebesgue constants for polynomial interpolation”, Lect. Notes Math., 399 (1974), 422–437