On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Lebesgue function corresponding to the Lagrange interpolation polynomial, strict lower and upper estimates are obtained and the well-known asymptotic formula is refined.
Mots-clés : Lagrange polynomial, Lebesgue function
Keywords: asymptotic formula, uniform remainder estimate.
@article{INTO_2021_192_a15,
     author = {I. A. Shakirov},
     title = {On the refinement of the asymptotic formula for the {Lebesgue} function of the {Lagrange} polynomial},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 142
EP  - 149
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/
LA  - ru
ID  - INTO_2021_192_a15
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 142-149
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/
%G ru
%F INTO_2021_192_a15
I. A. Shakirov. On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 142-149. http://geodesic.mathdoc.fr/item/INTO_2021_192_a15/

[5] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Naukova dumka, Kiev, 1988

[6] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965

[7] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976

[8] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.-L., 1949

[9] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, 2, Izd-vo Saratov. un-ta, Saratov, 1990

[10] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[11] Shakirov I. A., “O trigonometricheskom interpolyatsionnom polinome Lagranzha, imeyuschem minimalnuyu normu kak operator iz v”, Izv. vuzov. Mat., 10 (2010), 60–68

[12] Shakirov I. A., “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam”, Izv. vuzov. Mat., 10 (2011), 80–88

[13] Shakirov I. A., “O funktsiyakh Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Izv. vuzov. Mat., 7 (2013), 77–89

[14] Shakirov I. A., “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. mat. zh., 55:6 (2014), 1404–1423

[15] Shakirov I. A., “Asimptoticheskie formuly dlya funktsii Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Mat. zametki., 102:1 (2017), 133–147

[16] Brutman L., “Lebesgue functions for polynomial interpolation. A survey”, Ann. Numer. Math., 4 (1997), 111–127

[17] Rivlin T., “The Lebesgue constants for polynomial interpolation”, Lect. Notes Math., 399 (1974), 422–437