Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 131-141

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Cauchy problem associated with a first-kind evolutionary operator equation in a Banach space supplemented by a controlled term that depends nonlinearly on the phase variable, we obtain conditions for the preservation of unique global solvability under small variations of control (in other words, conditions for the stability of the existence of global solutions) and also a uniform estimate of the increment of solutions with respect to the norm of the space. As an example, we consider the initial-boundary-value problem for the Oskolkov system.
Mots-clés : evolution equation
Keywords: operator equation, Banach space, controlled nonlinearity, preservation of unique global solvability, stability of the existence of global solutions, Oskolkov's system of equations.
@article{INTO_2021_192_a14,
     author = {A. V. Chernov},
     title = {Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 131
EP  - 141
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/
LA  - ru
ID  - INTO_2021_192_a14
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 131-141
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/
%G ru
%F INTO_2021_192_a14
A. V. Chernov. Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 131-141. http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/