Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 131-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Cauchy problem associated with a first-kind evolutionary operator equation in a Banach space supplemented by a controlled term that depends nonlinearly on the phase variable, we obtain conditions for the preservation of unique global solvability under small variations of control (in other words, conditions for the stability of the existence of global solutions) and also a uniform estimate of the increment of solutions with respect to the norm of the space. As an example, we consider the initial-boundary-value problem for the Oskolkov system.
Mots-clés : evolution equation
Keywords: operator equation, Banach space, controlled nonlinearity, preservation of unique global solvability, stability of the existence of global solutions, Oskolkov's system of equations.
@article{INTO_2021_192_a14,
     author = {A. V. Chernov},
     title = {Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 131
EP  - 141
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/
LA  - ru
ID  - INTO_2021_192_a14
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 131-141
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/
%G ru
%F INTO_2021_192_a14
A. V. Chernov. Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 131-141. http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/

[1] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[2] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovr. mat. Fundam. napr., 31 (2009), 3–144

[3] Kalantarov V. K., Ladyzhenskaya O. A., “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zap. nauch. semin. LOMI., 69 (1977), 77–102

[4] Lions Zh. L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987

[5] Seregin G. A., Shilkin T. N., “Teoremy liuvillevskogo tipa dlya uravnenii Nave–Stoksa”, Usp. mat. nauk., 73:4 (442) (2018), 103–170

[6] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. mat. mat. fiz., 30:1 (1990), 3–21

[7] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami. Ch. I., NNGU, N. Novgorod, 1992

[8] Sumin V. I., Funktsionalnye volterrovy uravneniya v matematicheskoi teorii optimalnogo upravleniya raspredelennymi sistemami, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, N. Novgorod, 1998

[9] Sumin V. I., “Problema ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemykh kraevykh zadach i volterrovy funktsionalnye uravneniya”, Vestn. NNGU. Mat., 1 (2003), 91–107

[10] Sumin V. I., Chernov A. V., “Volterrovy funktsionalno-operatornye uravneniya v teorii optimizatsii raspredelennykh sistem”, Tr. Mezhdunar. konf. «Dinamika sistem i protsessy upravleniya», posv. 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, 15–20 sentyabrya 2014 g.), In-t mat. mekh. UrO RAN, Ekaterinburg, 2015, 293–300

[11] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[12] Chernov A. V., Volterrovy operatornye uravneniya i ikh primenenie v teorii optimizatsii giperbolicheskikh sistem, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, N. Novgorod, 2000

[13] Chernov A. V., “O gladkikh konechnomernykh approksimatsiyakh raspredelennykh optimizatsionnykh zadach s pomoschyu diskretizatsii upravleniya”, Zh. vychisl. mat. mat. fiz., 53:12 (2013), 2029–2043

[14] Chernov A. V., “O totalno globalnoi razreshimosti upravlyaemogo uravneniya tipa Gammershteina s variruemym lineinym operatorom”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 25:2 (2015), 230–243

[15] Chernov A. V., “O sokhranenii razreshimosti polulineinogo uravneniya globalnoi elektricheskoi tsepi”, Zh. vychisl. mat. mat. fiz., 58:12 (2018), 2095–2111

[16] Chernov A. V., “O totalnom sokhranenii odnoznachnoi globalnoi razreshimosti operatornogo uravneniya pervogo roda s upravlyaemoi dobavochnoi nelineinostyu”, Izv. vuzov. Mat., 11 (2018), 60–74

[17] Biler P., Hilhorst D., Nadzieja T., “Existence and nonexistence of solutions for a model of gravitational interaction of particles, II”, Colloq. Math., 67:2 (1994), 297–308

[18] Blokhin A. M., Tkachev D. L., “Asymptotic stability of the stationary solution for a new mathematical model of charge transport in semiconductors”, Q. Appl. Math., 70:2 (2012), 357–382

[19] Carasso C., Hassnaoui E. H., “Mathematical analysis of the model arising in study of chemical reactions in a catalytic cracking reactor”, Math. Comput. Model., 18:2 (1993), 93–109

[20] Catalano F., “The nonlinear Klein–Gordon equation with mass decreasing to zero”, Adv. Differ. Equations., 7:9 (2002), 1025–1044

[21] Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, J. Math. Anal. Appl., 281:1 (2003), 108–124

[22] Hu B., Yin H. M., “Global solutions and quenching to a class of quasilinear parabolic equations”, Forum Math., 6:3 (1994), 371–383

[23] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Math. Ann., 296:2 (1993), 215–234

[24] Korpusov M. O., Ovchinnikov A. V., Sveshnikov A. G., “On blow up of generalized Kolmogorov-Petrovskii-Piskunov equation”, Nonlin. Anal. Theory Meth. Appl., 71:11 (2009), 5724–5732

[25] Korpusov M. O., Sveshnikov A. G., “Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type”, J. Math. Sci., 148:1 (2008), 1–42

[26] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: A Cauchy problem”, Nonlin. Anal. Theory Meth. Appl., 24:8 (1995), 1193–1206

[27] Rozanova-Pierrat A., “Qualitative analysis of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation”, Math. Models Meth. Appl. Sci., 18:5 (2008), 781–812

[28] Saito H., “Global solvability of the Navier-Stokes equations with a free surface in the maximal regularity $L_p - L_q$ class”, J. Differ. Equations., 264:3 (2018), 1475–1520

[29] Tersenov A., “The Dirichlet problem for second order semilinear elliptic and parabolic equations”, Differ. Eqs. Appl., 1:3 (2009), 22, 393–411

[30] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, Am. Math. Soc., Providence, Rhode Island, 2010

[31] Turo J., “Global solvability of the mixed problem for first order functional partial differential equations”, Ann. Pol. Math., 52:3 (1991), 231–238

[32] Yamazaki T., “Scattering for a quasilinear hyperbolic equation of Kirchhoff type”, J. Differ. Equations., 143:1 (1998), 1–59

[33] Zhao X., “Self-similar solutions to a generalized Davey-Stewartson system”, Math. Comput. Model., 50:9–10 (2009), 1394–1399