Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a14, author = {A. V. Chernov}, title = {Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {131--141}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/} }
TY - JOUR AU - A. V. Chernov TI - Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 131 EP - 141 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/ LA - ru ID - INTO_2021_192_a14 ER -
%0 Journal Article %A A. V. Chernov %T Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 131-141 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/ %G ru %F INTO_2021_192_a14
A. V. Chernov. Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 131-141. http://geodesic.mathdoc.fr/item/INTO_2021_192_a14/