Periodic solutions of a fourth-order nonlinear spectral problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 20-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the existence of a periodic solution to a nonlinear spectral problem of the fourth order with an integral condition is proved.
Keywords: fourth-order nonlinear problem, integral condition, periodic solution, problem with spectral parameter.
@article{INTO_2021_192_a1,
     author = {I. V. Astashova and D. A. Sokolov},
     title = {Periodic solutions of a fourth-order nonlinear spectral problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--25},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a1/}
}
TY  - JOUR
AU  - I. V. Astashova
AU  - D. A. Sokolov
TI  - Periodic solutions of a fourth-order nonlinear spectral problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 20
EP  - 25
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a1/
LA  - ru
ID  - INTO_2021_192_a1
ER  - 
%0 Journal Article
%A I. V. Astashova
%A D. A. Sokolov
%T Periodic solutions of a fourth-order nonlinear spectral problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 20-25
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a1/
%G ru
%F INTO_2021_192_a1
I. V. Astashova; D. A. Sokolov. Periodic solutions of a fourth-order nonlinear spectral problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 20-25. http://geodesic.mathdoc.fr/item/INTO_2021_192_a1/

[6] Astashova I. V., “Kachestvennye svoistva reshenii kvazilineinykh obyknovennykh differentsialnykh uravnenii”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, ed. Astashova I. V., YuNITI-DANA, M., 2012, 22–290

[7] Egorov Yu. V., Kondratev V. A., “Ob otsenkakh pervogo sobstvennogo znacheniya v nekotorykh zadachakh Shturma—Liuvillya”, Usp. mat. nauk. UMN, 51:3 (309) (1996), 73–144

[8] Ezhak S. S., Karulina E. S., Telnova M. Yu., “Otsenki pervogo sobstvennogo znacheniya zadachi Shturma—Liuvillya s integralnym usloviem na potentsial”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, ed. Astashova I. V., YuNITI-DANA, M., 2012, 506–647

[9] Ezhak S. S., Telnova M. Yu., “Ob otsenkakh pervogo sobstvennogo znacheniya zadachi Shturma—Liuvillya s potentsialami iz vesovykh prostranstv”, Tr. semin. im. I. G. Petrovskogo, 32 (2019), 162–190

[10] Telnova M. Yu., “Ob otsenkakh sverkhu pervogo sobstvennogo znacheniya zadachi Shturma—Liuvillya s vesovym integralnym usloviem”, Vestn. SamGU., 6 (128) (2015), 124–129

[11] Astashova I., “Application of dynamical systems to the study of asymptotic properties ofsolutions to nonlinear higher-order differential equations”, J. Math. Sci., 126:5 (2005), 1361–-1391

[12] Astashova I. V., “On asymptotic behavior of solutions to a forth-order nonlinear differential equation”, Proc. 1 Int. Conf. on Pure Math. (Tenerife, Spain, January 10–12, 2014), WSEAS Press, 2014, 32–41

[13] Astashova I., “On asymptotic classification of solutions to fourth-order differential equations with singular power nonlinearity”, Math. Model. Anal., 21:4 (2016), 502-–521

[14] Egorov Yu. V., Kondratiev V. A., On Spectral Theory of Elliptic Operators, Birkhäuser, 1996

[15] Ezhak S. S., “On the estimates for the minimum eigenvalue of the Sturm–Liouville problem with integral condition (English)”, J. Math. Sci., 145:5 (2007), 5205-–5218

[16] Ezhak S. S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, eds. Pinelas S., Chipot M., Dosla Z., Springer, New York, 2013, 387–394

[17] Ezhak S., Telnova M., “On estimates for the first eigenvalue of some Sturm–Liouville problems with Dirichlet boundary conditions and a weighted integral condition”, Int. Workshop on the Qualitative Theory of Differential Equations, Razmadze Math. Inst., Tbilisi, Georgia, 2016, 81–85

[18] Ezhak S., Telnova M., “On one upper estimate for the first eigenvalue of a Sturm–Liouville problem with Dirichlet boundary conditions and a weighted integral condition”, Mem. Differ. Equations Math. Phys., 73 (2018), 55–64

[19] Karulina E., “Some estimates for the minimal eigenvalue of the Sturm–Liouville problem with third-type boundary conditions”, Math. Bohem., 136:4 (2011), 377–384

[20] Karulina E. S., “Oscillation properties of one fourth-order problem with a spectral parameter in boundary conditions”. Mat. Mezhdunar. konf. «Sovremennye problemy matematiki i mekhaniki», posv. 80-letiyu akad. V. A. Sadovnichego, MAKS Press, M., 2019, 197–198

[21] Kiguradze I. T., Kusano T., “On periodic solutions of even-order ordinary differential equations”, Ann. Mat. Pura Appl., 180:3 (2001), 285–301

[22] Lagrange J. L., “Sur la figure des colonnes”, Ouvres de Lagrange, v. 2, Gauthier-Villars, Paris, 1868, 125–170

[23] Telnova M., “Some estimates for the first eigenvalue of the Sturm–Liouville problem with a weight integral condition”, Math. Bohem., 137:2 (2012), 229–238