Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a0, author = {R. V. Harutyunyan}, title = {Boundary integral equations of the {Stefan} problem in terms of the time of phase transition}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--19}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/} }
TY - JOUR AU - R. V. Harutyunyan TI - Boundary integral equations of the Stefan problem in terms of the time of phase transition JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 19 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/ LA - ru ID - INTO_2021_192_a0 ER -
%0 Journal Article %A R. V. Harutyunyan %T Boundary integral equations of the Stefan problem in terms of the time of phase transition %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-19 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/ %G ru %F INTO_2021_192_a0
R. V. Harutyunyan. Boundary integral equations of the Stefan problem in terms of the time of phase transition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 3-19. http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/
[1] Anfinogentov V. I., Matematicheskoe modelirovanie SVCh nagreva dielektrikov, Diss. na soisk. uch. step. dokt. tekhn. nauk., Kazan, 2006
[2] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 828–840
[3] Danilyuk I. I., “O zadache Stefana”, Usp. mat. nauk., 40:5 (245) (1985), 133–185
[4] Kamenomostskaya S. L., “Problema Stefana”, Mat. sb., 53:4 (1961), 211–223
[5] Lykov A. V., Teplomassoobmen, Energiya, M., 1971
[6] Meirmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986
[7] Rozhin I. I., Chislennoe modelirovanie perekhodnykh protsessov v prikladnykh zadachakh teploprovodnosti s fazovymi prevrascheniyami, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Yakutsk, 2005
[8] Rubinshtein L. I., “K voprosu o chislennom reshenii integralnykh uravnenii zadachi Stefana”, Izv. vuzov. Mat., 1958, no. 4, 202–214
[9] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 816–827
[10] Dauzhenka T. A., Gishkeluk I. A., “Quasilinear heat equation in three dimensions and Stefan problem in permafrost soils in the frame of alternating directions finite difference scheme”, Proc. World Congress on Engineering (London, July 3–5, 2013), London, 2013, 1–6