Boundary integral equations of the Stefan problem in terms of the time of phase transition
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a new numerical method for solving the Stefan problem based on the time function of phase transitions is considered. A nonlinear integral equation of minimal dimension is obtained and an efficient numerical method for solving this equation is proposed. The method is tested on important problems of thawing of frozen soils with various methods of thermal action.
Keywords: Stefan problem, integral equation, numerical method, soil thawing.
@article{INTO_2021_192_a0,
     author = {R. V. Harutyunyan},
     title = {Boundary integral equations of the {Stefan} problem in terms of the time of phase transition},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/}
}
TY  - JOUR
AU  - R. V. Harutyunyan
TI  - Boundary integral equations of the Stefan problem in terms of the time of phase transition
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 19
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/
LA  - ru
ID  - INTO_2021_192_a0
ER  - 
%0 Journal Article
%A R. V. Harutyunyan
%T Boundary integral equations of the Stefan problem in terms of the time of phase transition
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-19
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/
%G ru
%F INTO_2021_192_a0
R. V. Harutyunyan. Boundary integral equations of the Stefan problem in terms of the time of phase transition. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 3-19. http://geodesic.mathdoc.fr/item/INTO_2021_192_a0/

[1] Anfinogentov V. I., Matematicheskoe modelirovanie SVCh nagreva dielektrikov, Diss. na soisk. uch. step. dokt. tekhn. nauk., Kazan, 2006

[2] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 828–840

[3] Danilyuk I. I., “O zadache Stefana”, Usp. mat. nauk., 40:5 (245) (1985), 133–185

[4] Kamenomostskaya S. L., “Problema Stefana”, Mat. sb., 53:4 (1961), 211–223

[5] Lykov A. V., Teplomassoobmen, Energiya, M., 1971

[6] Meirmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986

[7] Rozhin I. I., Chislennoe modelirovanie perekhodnykh protsessov v prikladnykh zadachakh teploprovodnosti s fazovymi prevrascheniyami, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Yakutsk, 2005

[8] Rubinshtein L. I., “K voprosu o chislennom reshenii integralnykh uravnenii zadachi Stefana”, Izv. vuzov. Mat., 1958, no. 4, 202–214

[9] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 816–827

[10] Dauzhenka T. A., Gishkeluk I. A., “Quasilinear heat equation in three dimensions and Stefan problem in permafrost soils in the frame of alternating directions finite difference scheme”, Proc. World Congress on Engineering (London, July 3–5, 2013), London, 2013, 1–6